Skip to main content
Log in

Electrospray Ionization Tandem Mass Spectrometry of Sodiated Adducts of Cholesteryl Esters

  • Original Article
  • Published:
Lipids

Abstract

Cholesteryl esters (CE) are important lipid storage molecules. The present study demonstrates that sodiated adducts of CE molecular species form positive ions that can be detected in both survey scan mode as well as by exploiting class-specific fragmentation in MS/MS scan modes. A common neutral loss for CE is the loss of cholestane (NL 368.5), which can be used to specifically quantify tissue CE molecular species. Using this MS/MS technique, CE molecular species were quantified in mouse monocyte-derived macrophages (J774 cells) incubated with either linoleic (18:2) or arachidonic acid (20:4). These studies revealed that arachidonic acid was not only incorporated into the CE pool, but also was elongated resulting in the accumulation of 22:4 and 24:4 CE molecular species in macrophages. Additionally, this technique was used to quantify CE molecular species present in crude lipid extracts from plasma of female mice fed a Western diet, which led to an enrichment in CE molecular species containing monounsaturated fatty acids compared to female mice fed a normal chow diet. Last, NL 368.5 spectra revealed the oxidation of the aliphatic fatty acid residues of CE molecular species containing polyunsaturated fatty acids. Taken together, these studies demonstrate the utility of using sodiated adducts of CE in conjunction with direct infusion electrospray ionization tandem mass spectrometry to rapidly quantify CE molecular species in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CE:

Cholesteryl ester

CAD:

Collisionally-activated dissociation

DAG:

Diacylglycerol

ESI:

Electrospray ionization

GC:

Gas chromatography

MS:

Mass spectrometry

NL:

Neutral loss

MS/MS:

Tandem mass spectrometry

References

  1. Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 255:9344–9352

    PubMed  CAS  Google Scholar 

  2. Meng X, Zou D, Shi Z, Duan Z, Mao Z (2004) Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids 39:37–41

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz CC, VandenBroek JM, Cooper PS (2004) Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res 45:1594–1607

    Article  PubMed  CAS  Google Scholar 

  4. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  PubMed  CAS  Google Scholar 

  5. Francone OL, Gurakar A, Fielding C (1989) Distribution and functions of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem 264:7066–7072

    PubMed  CAS  Google Scholar 

  6. Suckling KE, Stange EF (1985) Role of acyl-CoA: cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res 26:647–671

    PubMed  CAS  Google Scholar 

  7. Brecher PI, Chobanian AV (1974) Cholesteryl ester synthesis in normal and atherosclerotic aortas of rabbits and rhesus monkeys. Circ Res 35:692–701

    PubMed  CAS  Google Scholar 

  8. Harkewicz R, Hartvigsen K, Almazan F, Dennis EA, Witztum JL, Miller YI (2008) Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein. J Biol Chem 283:10241–10251

    Article  PubMed  CAS  Google Scholar 

  9. Zock PL, Mensink RP, Harryvan J, de Vries JHM, Katan MB (1997) Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. Am J Epidemiol 145:1114–1122

    PubMed  CAS  Google Scholar 

  10. Mahlberg FH, Glick JM, Jerome WG, Rothblat GH (1990) Metabolism of cholesteryl ester lipid droplets in a J774 macrophage foam cell model. Biochim Biophys Acta 1045:291–298

    PubMed  CAS  Google Scholar 

  11. Tosi MR, Bottura G, Lucchi P, Reggiani A, Trinchero A, Tugnoli V (2003) Cholesteryl esters in human malignant neoplasms. Int J Mol Med 11:95–98

    PubMed  CAS  Google Scholar 

  12. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  PubMed  CAS  Google Scholar 

  13. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  PubMed  CAS  Google Scholar 

  14. Schiller J, Süß R, Arnhold J, Fuchs B, Leßig J, Müller M, Petkovic M, Spalteholz H, Zschörnig O, Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43:449–488

    Article  PubMed  CAS  Google Scholar 

  15. Hutchins PM, Barkley RM, Murphy RC (2008) Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J Lipid Res 49:804–813

    Article  PubMed  CAS  Google Scholar 

  16. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI–MS/MS). Biochim Biophys Acta 1761:121–128

    PubMed  CAS  Google Scholar 

  17. Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM (2007) Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal Biochem 366:59–70

    Article  PubMed  CAS  Google Scholar 

  18. Duffin KL, Henion JD, Shieh JJ (1991) Electrospray and tandem mass spectrometric characterization of acylglycerol mixtures that are dissolved in nonpolar solvents. Anal Chem 63:1781–1788

    Article  PubMed  CAS  Google Scholar 

  19. Murphy RC, Fiedler J, Hevko J (2001) Analysis of nonvolatile lipids by mass spectrometry. Chem Rev 101:479–526

    Article  PubMed  CAS  Google Scholar 

  20. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  21. Duffin K, Obukowicz M, Raz A, Shieh JJ (2000) Electrospray/tandem mass spectrometry for quantitative analysis of lipid remodeling in essential fatty acid deficient mice. Anal Biochem 279:179–188

    Article  PubMed  CAS  Google Scholar 

  22. Kalo P, Kuuranne T (2001) Analysis of free and esterified sterols in fats and oils by flash chromatography, gas chromatography and electrospray tandem mass spectrometry. J Chromatogr A 935:237–248

    Article  PubMed  CAS  Google Scholar 

  23. Fang L, Harkewicz R, Hartvigsen K, Wiesner P, Choi S-H, Almazan F, Pattison J, Deer E, Sayaphupha T, Dennis EA, Witztum JL, Tsimikas S, Miller YI (2010) Oxidized cholesteryl esters and phospholipids in Zebrafish larvae fed a high cholesterol diet. J Biol Chem 285:32343–32351

    Article  PubMed  CAS  Google Scholar 

  24. Li YL, Su X, Stahl PD, Gross ML (2007) Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal Chem 79:1569–1574

    Article  PubMed  CAS  Google Scholar 

  25. Wewer V, Dombrink I, vom Dorp K, Doermann P (2011) Quantification of sterol lipids in plants by quadrupole time of flight mass spectrometry. J Lipid Res 52:1039–1054

    Google Scholar 

  26. Bowden JA, Albert CJ, Barnaby OS, Ford DA (2011) Analysis of cholesteryl esters and diacylglycerols using lithiated adducts and electrospray ionization-tandem mass spectrometry. Anal Biochem 417:202–210

    Article  PubMed  CAS  Google Scholar 

  27. Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295:88–100

    Article  PubMed  CAS  Google Scholar 

  28. Wijendran V, Lawrence P, Diau G-Y, Boehm G, Nathanielsz PW, Brenna JT (2002) Significant utilization of dietary arachidonic acid is for brain adrenic acid in baboon neonates. J Lipid Res 43:762–767

    PubMed  CAS  Google Scholar 

  29. Cheng B, Kowal J (1994) Analysis of adrenal cholesteryl esters by reversed phase high performance liquid chromatography. J Lipid Res 35:1115–1121

    PubMed  CAS  Google Scholar 

  30. German JB (1999) Food processing and lipid oxidation. Adv Exp Med Biol 459:23–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants HL074214, HL088073, HL098907 and RR019232 (DAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Ford.

Additional information

J. A. Bowden and F. Shao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 138 kb)

About this article

Cite this article

Bowden, J.A., Shao, F., Albert, C.J. et al. Electrospray Ionization Tandem Mass Spectrometry of Sodiated Adducts of Cholesteryl Esters. Lipids 46, 1169–1179 (2011). https://doi.org/10.1007/s11745-011-3609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3609-2

Keywords

Navigation