Skip to main content
Log in

Uneven Distribution of Ceramides, Sphingomyelins and Glycerophospholipids Between Heads and Tails of Rat Spermatozoa

  • Original Article
  • Published:
Lipids

Abstract

Previous work showed that rat germ cells and spermatozoa contain ceramides and sphingomyelins with high proportions of nonhydroxy and 2-hydroxy (2-OH) polyunsaturated fatty acids (PUFA) with very long chains (VLCPUFA). The aim of this study was to assess how these lipids are distributed between the heads and tails of mature spermatozoa in comparison with other membrane lipid classes. In addition to quantitative differences due to the fact that these gametes have a long, voluminous tail and a minute head, several compositional dissimilarities emerged between these two regions. The total cholesterol/total phospholipid ratio, the choline/ethanolamine glycerophospholipid (ChoGpl/EtnGpl) ratio, and the proportion of plasmalogens within these two classes, were much larger in the head than in the tail. Whereas EtnGpl was rich in 22:5n-6 in both regions, ChoGpl had plenty of 22:4n-9, especially in the heads. An important proportion of the head EtnGpl- 22:5n-6 and ChoGpl 22:4n-9 was in plasmenyl- (rather than in phosphatidyl-) subclasses. The heads concentrated all of the sphingomyelin species with nonhydroxy- and 2-OH VLCPUFA, and the tails most of the saturated fatty acids that are present in total sperm sphingomyelin. Unexpectedly, virtually all of the abundant spermatozoal ceramides, predominantly made up by species with 2-OH VLCPUFA, was located in the tail. The fact that intact rat spermatozoa constitutively have much more VLCPUFA-containing ceramide than sphingomyelin is explained by the present findings, since the former are mostly lipids of the large tail while the latter mostly collect in the small head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cer:

Ceramide

ChoGpl:

Choline glycerophospholipids

EtnGpl:

Ethanolamine glycerophospholipids

Gpl:

Glycerophospholipids

PUFA:

Polyunsaturated fatty acids

CerPCho:

Sphingomyelin

PakCho:

1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine

PlsCho:

1-O-alkenyl-2-acyl-sn-glycero-3-phosphocholine

PtdCho:

1,2-diacyl-sn-glycero-3-phosphocholine

PakEtn:

1-O-alkyl-2-acyl-sn--glycero-3 phosphoethanolamine

PlsEtn:

1-alk,1′enyl-2-acyl-sn-glycero-3-phosphoethanolamine

PtdEtn:

1,2-diacyl-sn-glycero-3-phosphoethanolamine

Ptd2Gro:

diphosphatidylglycerol or cardiolipin

VLCPUFA:

Very long-chain polyunsaturated fatty acids (n- and 2-OH are used as prefixes to denote nonhydroxy and 2-hydroxy VLCPUFA, respectively). The fatty acids are named by the convention, number carbon atoms: number of double bonds, with n-3, n-6 and n-9 indicating the position of the first double bond counting from the methyl end

References

  1. Robinson BS, Johnson DW, Poulos A (1992) Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J Biol Chem 267:1746–1751

    PubMed  CAS  Google Scholar 

  2. Zanetti SR, de Los Angeles MM, Rensetti DE, Fornes MW, Aveldano MI (2010) Ceramides with 2-hydroxylated, very long-chain polyenoic fatty acids in rodents: from testis to fertilization-competent spermatozoa. Biochimie 92:1778–1786

    Article  PubMed  CAS  Google Scholar 

  3. Furland NE, Luquez JM, Oresti GM, Aveldano MI (2011) Mild testicular hyperthermia transiently increases lipid droplet accumulation and modifies sphingolipid and glycerophospholipid acyl chains in the rat testis. Lipids 46:443–454

    Article  PubMed  CAS  Google Scholar 

  4. Oresti GM, Ayuza Aresti PL, Gigola G, Reyes LE, Aveldano MI (2010) Sequential depletion of rat testicular lipids with long-chain and very long-chain polyenoic fatty acids after X-ray-induced interruption of spermatogenesis. J Lipid Res 51:2600–2610

    Article  PubMed  CAS  Google Scholar 

  5. Oresti GM, Reyes JG, Luquez JM, Osses N, Furland NE, Aveldano MI (2010) Differentiation-related changes in lipid classes with long-chain and very long-chain polyenoic fatty acids in rat spermatogenic cells. J Lipid Res 51:2909–2921

    Article  PubMed  CAS  Google Scholar 

  6. Tsai PS, Gadella BM (2009) Molecular kinetics of proteins at the surface of porcine sperm before and during fertilization. Soc Reprod Fertil Suppl 66:23–36

    PubMed  CAS  Google Scholar 

  7. Belleannee C, Belghazi M, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, Dacheux F (2011) Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 11:1952–1964

    Article  PubMed  CAS  Google Scholar 

  8. Nikolopoulou M, Soucek DA, Vary JC (1985) Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815:486–498

    Article  PubMed  CAS  Google Scholar 

  9. Poulos A, Voglmayr JK, White IG (1973) Changes in the phospholipid composition of bovine spermatozoa during their passage through the male reproductive tract. J Reprod Fertil 32:309–310

    Article  PubMed  CAS  Google Scholar 

  10. Poulos A, Brown PD, Cox R, White IG (1974) Proceedings: changes in the phospholipid composition of spermatozoa in the reproductive tract of the ram. J Reprod Fertil 36:442–443

    Article  PubMed  CAS  Google Scholar 

  11. Rana AP, Majumder GC, Misra S, Ghosh A (1991) Lipid changes of goat sperm plasma membrane during epididymal maturation. Biochim Biophys Acta 1061:185–196

    Article  PubMed  CAS  Google Scholar 

  12. Aveldano MI, Rotstein NP, Vermouth NT (1992) Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem J 283(Pt 1):235–241

    PubMed  CAS  Google Scholar 

  13. Furland NE, Oresti GM, Antollini SS, Venturino A, Maldonado EN, Aveldano MI (2007) Very long-chain polyunsaturated fatty acids are the major acyl groups of sphingomyelins and ceramides in the head of mammalian spermatozoa. J Biol Chem 282:18151–18161

    Article  PubMed  CAS  Google Scholar 

  14. Zanetti SR, Monclus ML, Rensetti DE, Fornes MW, Aveldano MI (2010) Differential involvement of rat sperm choline glycerophospholipids and sphingomyelin in capacitation and the acrosomal reaction. Biochimie 92:1886–1894

    Article  PubMed  CAS  Google Scholar 

  15. Gitlits VM, Toh BH, Loveland KL, Sentry JW (2000) The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 79:104–111

    Article  PubMed  CAS  Google Scholar 

  16. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  17. Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  PubMed  CAS  Google Scholar 

  18. Christie WW (1982) Lipid analysis. Pergamon Press, Oxford, UK

    Google Scholar 

  19. Poulos A, Johnson DW, Beckman K, White IG, Easton C (1987) Occurrence of unusual molecular species of sphingomyelin containing 28–34-carbon polyenoic fatty acids in ram spermatozoa. Biochem J 248:961–964

    PubMed  CAS  Google Scholar 

  20. Robinson BS, Johnson DW, Poulos A (1992) Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J Biol Chem 267:1746–1751

    PubMed  CAS  Google Scholar 

  21. Sandhoff R, Geyer R, Jennemann R, Paret C, Kiss E, Yamashita T, Gorgas K, Sijmonsma TP, Iwamori M, Finaz C, Proia RL, Wiegandt H, Grone HJ (2005) Novel class of glycosphingolipids involved in male fertility. J Biol Chem 280:27310–27318

    Article  PubMed  CAS  Google Scholar 

  22. Furland NE, Zanetti SR, Oresti GM, Maldonado EN, Aveldano MI (2007) Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells. J Biol Chem 282:18141–18150

    Article  PubMed  CAS  Google Scholar 

  23. Cross NL (2000) Sphingomyelin modulates capacitation of human sperm in vitro. Biol Reprod 63:1129–1134

    Article  PubMed  CAS  Google Scholar 

  24. Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, Gadella BM (2001) Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci 114:3543–3555

    PubMed  CAS  Google Scholar 

  25. Shadan S, James PS, Howes EA, Jones R (2004) Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71:253–265

    Article  PubMed  CAS  Google Scholar 

  26. James PS, Wolfe CA, Ladha S, Jones R (1999) Lipid diffusion in the plasma membrane of ram and boar spermatozoa during maturation in the epididymis measured by fluorescence recovery after photobleaching. Mol Reprod Dev 52:207–215

    Article  PubMed  CAS  Google Scholar 

  27. Connor WE, Lin DS, Wolf DP, Alexander M (1998) Uneven distribution of desmosterol and docosahexaenoic acid in the heads and tails of monkey sperm. J Lipid Res 39:1404–1411

    PubMed  CAS  Google Scholar 

  28. Parks JE, Arion JW, Foote RH (1987) Lipids of plasma membrane and outer acrosomal membrane from bovine spermatozoa. Biol Reprod 37:1249–1258

    Article  PubMed  CAS  Google Scholar 

  29. Fuchs B, Muller K, Goritz F, Blottner S, Schiller J (2007) Characteristic oxidation products of choline plasmalogens are detectable in cattle and roe deer spermatozoa by MALDI-TOF mass spectrometry. Lipids 42:991–998

    Article  PubMed  CAS  Google Scholar 

  30. Lenzi A, Gandini L, Picardo M, Tramer F, Sandri G, Panfili E (2000) Lipoperoxidation damage of spermatozoa polyunsaturated fatty acids (PUFA): scavenger mechanisms and possible scavenger therapies. Front Biosci 5:E1–E15

    Article  PubMed  CAS  Google Scholar 

  31. Reisse S, Rothardt G, Volkl A, Beier K (2001) Peroxisomes and ether lipid biosynthesis in rat testis and epididymis. Biol Reprod 64:1689–1694

    Article  PubMed  CAS  Google Scholar 

  32. Sprecher H (2002) The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 67:79–83

    Article  PubMed  CAS  Google Scholar 

  33. Saether T, Tran TN, Rootwelt H, Christophersen BO, Haugen TB (2003) Expression and regulation of delta5-desaturase, delta6-desaturase, stearoyl-coenzyme A (CoA) desaturase 1, and stearoyl-CoA desaturase 2 in rat testis. Biol Reprod 69:117–124

    Article  PubMed  CAS  Google Scholar 

  34. Sato H, Taketomi Y, Isogai Y, Miki Y, Yamamoto K, Masuda S, Hosono T, Arata S, Ishikawa Y, Ishii T, Kobayashi T, Nakanishi H, Ikeda K, Taguchi R, Hara S, Kudo I, Murakami M (2010) Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice. J Clin Invest 120:1400–1414

    Article  PubMed  CAS  Google Scholar 

  35. Butler A, He X, Gordon RE, Wu HS, Gatt S, Schuchman EH (2002) Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am J Pathol 161:1061–1075

    Article  PubMed  CAS  Google Scholar 

  36. Otala M, Pentikainen MO, Matikainen T, Suomalainen L, Hakala JK, Perez GI, Tenhunen M, Erkkila K, Kovanen P, Parvinen M, Dunkel L (2005) Effects of acid sphingomyelinase deficiency on male germ cell development and programmed cell death. Biol Reprod 72:86–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds granted by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), ANPCyT (Agencia Nacional de Promoción de la Ciencia y la Tecnología), and UNS (Universidad Nacional del Sur), Argentina. G. M. O. and J. M. L. are research fellows from CONICET and the Comisión de Investigaciones Científicas (CIC) of the Province of Buenos Aires, respectively. The collaboration of Pablo L. Ayuza Aresti in the early phases of this work is gratefully acknowledged.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo M. Oresti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 33.9 kb)

About this article

Cite this article

Oresti, G.M., Luquez, J.M., Furland, N.E. et al. Uneven Distribution of Ceramides, Sphingomyelins and Glycerophospholipids Between Heads and Tails of Rat Spermatozoa. Lipids 46, 1081–1090 (2011). https://doi.org/10.1007/s11745-011-3601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3601-x

Keywords

Navigation