Skip to main content
Log in

Fatty Acids of Chthonomonas calidirosea, of a Novel Class Chthonomonadetes from a Recently Described Phylum Armatimonadetes

  • Original Article
  • Published:
Lipids

Abstract

A Gram-negative, aerobic, pink-pigmented, rod-shaped bacterium Chthonomonas calidirosea (strain T49T) with an optimal temperature for growth of 68 °C, isolated from soil samples from Hell’s Gate in the Tikitere geothermal system (New Zealand), was the first cultivated bacterium of the novel phylum Armatimonadetes (formerly candidate division OP10). The lipid composition of C. calidirosea presents a number of unusual features both in the fatty acids and polar lipids. This contribution reports on the fatty acid profile of C. calidirosea. Transmethylation of bacterial biomass yielded fatty acid methyl esters and hydrocarbons, including squalene, partially hydrogenated squalenes, and diploptene. The only type of unsaturation found in C. calidirosea fatty acids was cis-Δ5, as revealed by GCMS of dimethyl disulfide (DMDS) adducts, and the lack of trans-unsaturation absorbance at 960–980 cm−1 in the IR spectrum of fatty acids methyl esters. An unidentified component X with ECL 16.86 (BP1) and ECL 17.27 (BP20) was also observed, with molecular ion at m/z 282 (“17:1”). X did not form DMDS adducts, nor was affected by mild hydrogenation conditions, indicating the likely presence of a ring rather than unsaturation. The presence of a cyclopropane ring with cis-stereochemistry was confirmed by the 1H-NMR spectrum. Hydrogenation of X in acetic acid resulted in formation of straight chain 17:0, 5-methyl- and 6-methyl-16:0 fatty acid methyl esters, thus confirming the structure of a novel 5,6-methylene hexadecanoic acid. The major fatty acids of a solid media-grown C. calidirosea were as follows (in weight % of total fatty acids): 16:0 (25.8), i17:0 (19.3), ai17:0 (13.5), 16:1∆5 (8.8), i17:1∆5 (6.8), 5,6-methylene 16:0 (5.2), i16:0 (4.4), 18:0 (3.6), 18:1∆5 (3.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ai :

Anteiso

br :

Branched

DMDS:

Dimethyl disulfide (adducts)

ECL:

Equivalent chain length

FAME:

Fatty acids methyl esters

HPTLC:

High performance thin-layer chromatography

i :

Iso

n :

Normal

References

  1. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041

    Article  PubMed  CAS  Google Scholar 

  2. Lee KC-Y, Dunfield PF, Morgan XC, Crowe MA, Houghton KM, Vyssotski M, Ryan JLJ, Lagutin K, McDonald IR, Stott MB (2010) Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic microorganism of a novel bacterial class, Chthonomonadetes classis. nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.027235-0

  3. Huang Y, Anderson R (1989) Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 264:18667–18672

    PubMed  CAS  Google Scholar 

  4. Huang Y, Anderson R (1995) Glucosyl diglyceride lipid structures in Deinococcus radiodurans. J Bacteriol 177:2567–2571

    PubMed  CAS  Google Scholar 

  5. Anderson R, Huang Y (1992) Fatty acids are precursors of alkylamines in Deinococcus radiodurans. J Bacteriol 174:7168–7173

    PubMed  CAS  Google Scholar 

  6. Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Revs 61:429–441

    CAS  Google Scholar 

  7. MacMillan JB, Molinski TF (2005) Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod 68:604–606

    Article  PubMed  CAS  Google Scholar 

  8. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  9. Shigeru Y, Nishino T, Yumoto N, Tokushige M (1991) Hopanoid biosynthesis of Zymomonas mobilis. Agric Biol Chem 55:589–591

    Article  Google Scholar 

  10. Vaskovsky VE, Kostetsky EY, Vasendin IM (1975) A universal reagent for phospholipid analysis. J Chromatogr 114:129–141

    Article  PubMed  CAS  Google Scholar 

  11. Svetashev VI, Vysotskii MV, Ivanova EP, Mikhailov VV (1995) Cellular fatty acids of Alteromonas species. Syst Appl Microbiol 18:37–43

    Article  CAS  Google Scholar 

  12. Carreau JP, Dubacq JP (1978) Adaptation of macro-scale method to the micro-scale for the fatty acid methyl transesterification of biological lipid extracts. J Chromatogr 151:384–390

    Article  CAS  Google Scholar 

  13. Cyberlipid (2011) Low pressure fractionation of neutral lipids. http://www.cyberlipid.org/fraction/frac0006.htm. Accessed Jan 2011

  14. Kaneda T (1977) Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev 41:391–418

    PubMed  CAS  Google Scholar 

  15. Appelquist LA (1972) A simple and convenient procedure for the hydrogenation of lipids on the micro-and nanomole scale. J Lipid Res 13:146–148

    Google Scholar 

  16. Francis GW (1981) Alkylthiolation for the determination of double-bond position in unsaturated fatty acid esters. Chem Phys Lipids 29:369–374

    Article  CAS  Google Scholar 

  17. Yamamoto K, Shibahara A, Nakayama T, Kajimoto G (1991) Double-bond localization in heneicosapentaenoic acid by a gas chromatography/mass spectrometry (GC/MS) method. Lipids 26:948–950

    Article  CAS  Google Scholar 

  18. McCloskey JA, Law JH (1967) Ring location in cyclopropane fatty acid esters by a mass spectrometric method. Lipids 2:225–230

    Article  PubMed  CAS  Google Scholar 

  19. Saito T, Ochiai H (1998) Fatty acid composition of the cellular slime mold Polysphondylium pallidum. Lipids 33:327–332

    Article  PubMed  CAS  Google Scholar 

  20. Shiojima K, Arai Y, Masude K, Kamada T, Ageta H (1983) Fern constituents: polypodatetraenes, novel bicyclic triterpenoids, isolated from polypodaceous and aspidiaceous plants. Tetr Lett 24:5733–5736

    Article  CAS  Google Scholar 

  21. Härtig C (2008) Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database. J Chromatogr A 1177:159–169

    Article  PubMed  Google Scholar 

  22. Knothe G (2006) NMR characterization of dihydrosterculic acid and its methyl ester. Lipids 41:393–396

    Article  PubMed  CAS  Google Scholar 

  23. Apon JMB, Nicolaides N (1975) Determination of the position isomers of the methyl branched fatty acid methyl esters by capillary GC/MS. J Chromatogr Sci 13:467–473

    PubMed  CAS  Google Scholar 

  24. Kaneda T (1971) Major occurrence of cis5 fatty acids in three psychrophilic species of Bacillus. Biochem Biophys Res Commun 43:298–300

    Article  PubMed  CAS  Google Scholar 

  25. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Revs 55:288–302

    CAS  Google Scholar 

  26. Wessjohann LA, Brandt W, Thiemann T (2003) Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem Rev 103:1625–1647

    Article  PubMed  CAS  Google Scholar 

  27. Christie WW, Gunstone FD, Ismail IA, Wade L (1968) Fatty acids, part 17. The synthesis and chromatographic and spectroscopic properties of the cyclopropane esters derived from all the methyl octadecenoates (Δ2–Δ17). Chem Phys Lipids 2:196–202

    Article  PubMed  CAS  Google Scholar 

  28. Jiao Y, Yoshihara T, Ishikuri S, Uchino H, Ichihara A (1996) Structural identification of Cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett 37:1039–1042

    Article  CAS  Google Scholar 

  29. Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng X-Y, Hanada S, Mor K, Kamagata Y (2010) Armatimonas rosea gen. nov., sp. nov., a Gram-negative, aerobic, chemoheterotrophic bacterium of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.025643-0

Download references

Acknowledgments

The authors are grateful to Dr. Kevin Mitchell for help with HPLC, Dr. Herbert Wong for NMR-spectra recording, Dr. Owen Catchpole for reviewing the manuscript, Alison Speakman for invaluable help in information retrieval (all—IRL), and anonymous reviewers for helping to make this article better. The authors also thank the Tikitere Trust for their on-going support of this research.

Conflict of interest

Authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vyssotski.

About this article

Cite this article

Vyssotski, M., Lee, K.CY., Lagutin, K. et al. Fatty Acids of Chthonomonas calidirosea, of a Novel Class Chthonomonadetes from a Recently Described Phylum Armatimonadetes. Lipids 46, 1155–1161 (2011). https://doi.org/10.1007/s11745-011-3597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3597-2

Keywords

Navigation