Skip to main content
Log in

Synthesis of Phosphatidylcholine Through Phosphatidylethanolamine N-Methylation in Tissues of the Mussel Mytilus galloprovincialis

  • Original Article
  • Published:
Lipids

Abstract

We previously demonstrated the importance of upregulation of phosphatidylethanolamine N-methylation pathway in euryhaline fish and crustaceans facing hyperosmotic conditions. In marine molluscs phosphatidylcholine synthesis through N-methylation of phosphatidylethanolamine has not been described until now. In vivo labeling of the mussel Mytilus galloprovincialis with [1-3H]-ethanolamine showed that the digestive gland is the tissue expressing the highest incorporation into lipids. A sustained increase in lipid labeling was observed up to 72 h following label injection with 79–92% of radioactivity concentrated into phosphatidylethanolamine and phosphatidylcholine. A direct correlation (r = 0.47, p < 0.01) between the specific radioactivities of phosphatidylcholine in plasma and the digestive gland was observed. Moreover, the phosphatidylcholine fatty acid compositions of plasma and the digestive gland were similar but differed from those of phosphatidylcholine purified from other tissues. In vitro incubation of tissues with [1-3H]-ethanolamine or L-[3-3H]-serine showed that a significant labeling of the choline moiety of phosphatidylcholine was observed in the digestive gland and hemocytes. Pulse-chase experiments with [1-3H]-ethanolamine also demonstrated that hemocytes are exchanging the newly formed phospholipids with plasma. Finally, phosphatidylethanolamine N-methyltransferase assays demonstrated salinity-dependent activities in the digestive gland and hemocytes. We conclude that in M. galloprovincialis an active phosphatidylcholine synthesis through N-methylation of phosphatidylethanolamine occurs in the digestive gland and hemocytes and that this newly formed phosphatidylcholine is partly exchanged with plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Two spots of phosphonolipids were detected on TLC plates when lipids from Mytilus galloprovincialis were separated by the 2D-TLC procedure used herein. ESI–MS and MS/MS analysis showed that both compounds are ceramide aminoethylphosphonate. The full characterization of these two compounds (reported as phosphonolipid X and phosphonolipid Y in this manuscript) will be described elsewhere.

Abbreviations

Ptd2Gro:

Diphosphatidylglycerol

LysoPtdCho:

Lysophosphatidylcholine

LysoPtdEtn:

Lysophosphatidylethanolamine

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

Pemt :

PtdEtn N-methyltransferase

PtdSer:

Phosphatidylserine

PtdIns:

Phosphatidylinositol

TLC:

Thin layer chromatography

References

  1. Kent C (1995) Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 64:315–343

    Article  PubMed  CAS  Google Scholar 

  2. Vance DE, Ridgway ND (1988) The methylation of phosphatidylethanolamine. Prog Lipid Res 27:61–79

    Article  PubMed  CAS  Google Scholar 

  3. DeLong CJ, Shen YJ, Thomas MJ, Cui Z (1999) Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem 274:29683–29688

    Article  PubMed  CAS  Google Scholar 

  4. Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostasis. J Lipid Res 49:1187–1194

    Article  PubMed  CAS  Google Scholar 

  5. Zwingelstein G, Brichon G, Bodennec J, Chapelle S, Abdul-Malak N, El Babili M (1998) Formation of phospholipid nitrogenous bases in euryhaline fish and crustaceans. II. Phosphatidylethanolamine methylation in liver and hepatopancreas. Comp Biochem Physiol 120 B:475–482

    Google Scholar 

  6. Mato JM, Alemany S (1983) What is the function of phospholipid N-methylation? Biochem J 213:1–10

    PubMed  CAS  Google Scholar 

  7. Vance DE, Walkey CJ (1998) Roles for the methylation of phosphatidylethanolamine. Curr Opin Lipidol 9:125–130

    Article  PubMed  CAS  Google Scholar 

  8. Vance DE, Walkey CJ, Agellon LB (1998) Why has phosphatidylethanolamine N-methyltransferase survived in evolution? Biochem Soc Trans 26:337–340

    PubMed  CAS  Google Scholar 

  9. Walkey CJ, Yu L, Agellon LB, Vance DE (1998) Biochemical and evolutionary significance of phospholipid methylation. J Biol Chem 273:27043–27046

    Article  PubMed  CAS  Google Scholar 

  10. Walkey CJ, Donohue LR, Bronson R, Agellon LB, Vance DE (1997) Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase. Proc Natl Acad Sci USA 94:12880–12885

    Article  PubMed  CAS  Google Scholar 

  11. Hirata F, Axelrod J (1980) Phospholipid methylation and biological signal transmission. Science 209:1082–1090

    Article  PubMed  CAS  Google Scholar 

  12. Hirata F, Strittmatter WJ, Axelrod J (1979) beta-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A 76:368–372

    Article  PubMed  CAS  Google Scholar 

  13. Strittmatter WJ, Hirata F, Axelrod J (1979) Phospholipid methylation unmasks cryptic beta-adrenergic receptors in rat reticulocytes. Science 204:1205–1207

    Article  PubMed  CAS  Google Scholar 

  14. Strittmatter WJ, Hirata F, Axelrod J (1981) Regulation of the beta-adrenergic receptor by methylation of membrane phospholipids. Adv Cyclic Nucleotide Res 14:83–91

    PubMed  CAS  Google Scholar 

  15. Vance DE, de Kruijff B (1980) The possible functional significance of phosphatidylethanolamine methylation. Nature 288:277–279

    Article  PubMed  CAS  Google Scholar 

  16. Zwingelstein G, Abdul Malak N, Brichon G (1978) Effect of environmental temperature on biosynthesis of liver phosphatidyl-choline in the trout (Salmo gairdneri). J Therm Biol 3:229–233

    Article  CAS  Google Scholar 

  17. Zwingelstein G, Bodennec J, Brichon G, Abdul Malak N, Chapelle S, El Babili M (1998) Formation of phospholipid nitrogenous bases in euryhaline fish and crustaceans. I. Effects of salinity and temperature on synthesis of phosphatidylserine and its decarboxylation. Comp Biochem Physiol 120 B: 467-473

  18. Zwingelstein G, Bodennec J (1998) Phospholipid metabolism in euryhaline fish and crustaceans: Effects of environmental salinity and temperature. Recent Res Devel in Lipids Res 2:39–52

    CAS  Google Scholar 

  19. Zwingelstein G, Abdul Malak N, Bodennec J, Brichon G (2001) Environmental salinity and phospholipid metabolism in euryhaline fish. Trends in Comparative Biochem & Physiol 8:27–41

    CAS  Google Scholar 

  20. Athamena A, Brichon G, Trajkovic-Bodennec S, Péqueux A, Chapelle S, Bodennec J, Zwingelstein G (2011) Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph. J Comp Physiol B. doi: 10.1007/s00360-011-0562-6

  21. Péqueux A (1995) Osmotic regulation in crustaceans. J Crustacean Biology 15:1–60

    Article  Google Scholar 

  22. Joseph JD (1982) Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Prog Lipid Res 21:109–153

    Article  PubMed  CAS  Google Scholar 

  23. Voogt MT. (1983) Lipids: their distribution and metabolism. In: Wilbur, KM, Hochachka, PW ( eds) The Mollusca. Academic Press, pp 329-369

  24. Bayne BL (1973) Physiological changes in Mytilus edulis L induced by temperature and nutritive stress. J Mar Biol 53:39–58

    Article  CAS  Google Scholar 

  25. Thompson RJ (1977) Blood chemistry, biochemical composition, and the annual reproductive cycle in the giant scallop, Placopecten magellanicus, from southeast Newfoundland. J Fish Res Board Can 34:2104–2116

    Article  CAS  Google Scholar 

  26. Hoskin GP, Hoskin SP (1977) Partial characterization of the hemolymph lipids of Mercenaria mercenaria (Mollusca: Bivalvia) by thin-layer chromatography and analyses of serum fatty acids during starvation. Biol Bull 152:373–381

    Article  CAS  Google Scholar 

  27. Allen WV, Conley H (1982) Transport of lipids in the blood of the Pacific oyster, Crassostrea gigas (Thunberg). Comp Biochem Physiology 71 B:201–207

    Article  Google Scholar 

  28. Pollero RJ, Huca G, Brenner RR (1985) Role of hemocytes and plasma on lipid transport in the freshwater mollusc Diplodon delodontus. Comp Biochem Physiol 82 A:339–343

    Article  Google Scholar 

  29. de Moreno JEA, Moreno VJ, Brenner RR (1977) Lipid metabolism of the yellow clam, Mesodesma mactroides: 3-saturated fatty acids and acetate metabolism. Lipids 12:804–808

    Article  PubMed  Google Scholar 

  30. Lubet P, Brichon G, Besnard JY, Zwingelstein G (1985) Composition and metabolism of lipids in some tissues of the mussel Mytilus galloprovincialis L. (Moll. Bivalvia). In vivo and in vitro incorporation of 1 (3)-[3H]-glycerol. Comp Biochem Physiol 82 B:425–431

    Google Scholar 

  31. Lubet P (1959) Recherches sur le cycle sexuel et l’émission des gamètes chez les Mytilidae et les pectinidae (Moll. Bivalves). Revue des travaux de l’Office (scientifique et technologique) des Pêches maritimes 23:387–548

    Google Scholar 

  32. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  33. Chapelle S, Dandrifosse G, Zwingelstein G (1976) Metabolism of phospholipids of anterior or posterior gills of the crab Eriocheir sinensis M EDW, during the adaptation of this animal to media of various salinities. Int J Biochem 7:343–351

    Article  CAS  Google Scholar 

  34. Bartlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234:466–469

    PubMed  CAS  Google Scholar 

  35. Buccoliero R, Bodennec J, Van Echten-Deckert G, Sandhoff K, Futerman AH (2004) Phospholipid synthesis is decreased in neuronal tissue in a mouse model of Sandhoff disease. J Neurochem 90:80–88

    Article  PubMed  CAS  Google Scholar 

  36. Portoukalian J, Meister R, Zwingelstein G (1978) Improved 2-dimensional solvent system for thin-layer chromatographic analysis of polar lipids on silica-gel 60 precoated plates. J Chromatogr 152:569–574

    Article  CAS  Google Scholar 

  37. Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127

    PubMed  CAS  Google Scholar 

  38. Vaskovsky VE, Suppes ZS (1971) Detection of choline-containing lipids on thin-layer chromatograms. J Chromatogr 63:455–456

    Article  PubMed  CAS  Google Scholar 

  39. Stillway LW, Harmon SJ (1980) A procedure for detecting phosphonolipids on thin-layer chromatograms. J Lipid Res 21:1141–1143

    PubMed  CAS  Google Scholar 

  40. Renkonen OJ (1966) Altered fatty acid distribution of glycerophosphatides induced by acetolysis. Lipids 1:160–164

    Article  PubMed  CAS  Google Scholar 

  41. Pietsch A, Lorenz RL (1993) Rapid separation of the major phospholipid classes on a single aminopropyl cartridge. Lipids 28:945–947

    Article  CAS  Google Scholar 

  42. Anderton P, Wild TF, Zwingelstein G (1981) Modification of the fatty acid composition of phospholipid in measles virus-persistently infected cells. Biochem Biophys Res Commun 103:285–291

    Article  PubMed  CAS  Google Scholar 

  43. Vaisman N, Kaysar N, Zaruk-Adasha Y, Pelled D, Brichon G, Zwingelstein G, Bodennec J (2008) Correlation between changes in blood fatty acid composition and visual sustained attention performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr 87:1170–1180

    PubMed  CAS  Google Scholar 

  44. Ridgway ND, Vance DE (1992) Phosphatidylethanolamine N-methyltransferase from rat liver. Methods Enzymol 209:366–374

    Article  PubMed  CAS  Google Scholar 

  45. Zar JH (1988) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  46. Lubet P, Delongcamp D (1969) Etude des variations annuelles des constituants lipidiques chez Mytilus edulis L à Luc sur Mer. Comptes rendus des séances de la Société de biologie et de ses filiales 163:1110–1112

    Google Scholar 

  47. Aktas M, Wessel M, Hacker S, Klusener S, Gleichenhagen J, Narberhaus F (2010) Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 89:888–894

    Article  PubMed  CAS  Google Scholar 

  48. Hirata F, Axelrod J, Crews FT (1979) Concanavalin A stimulates phospholipid methylation and phosphatidylserine decarboxylation in rat mast cells. Proc Natl Acad Sci USA 76:4813–4816

    Article  PubMed  CAS  Google Scholar 

  49. Hirata F, Corcoran BA, Venkatasubramanian K, Schiffmann E, Axelrod J (1979) Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc Natl Acad Sci USA 76:2640–2643

    Article  PubMed  CAS  Google Scholar 

  50. Noga AA, Zhao Y, Vance DE (2002) An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem 277:42358–42365

    Article  PubMed  CAS  Google Scholar 

  51. Noga AA, Vance DE (2003) A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J Biol Chem 278:21851–21859

    Article  PubMed  CAS  Google Scholar 

  52. Vance DE (2008) Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol 19:229–234

    Article  PubMed  CAS  Google Scholar 

  53. Lin H, Jiang J, Xue CH, Zhang B, Xu JC (2003) Seasonal changes in phospholipids of mussel (Mytilus edulis Linné). J Sci Food Agric 83:133–135

    Article  CAS  Google Scholar 

  54. Hax WM, van Kessel WS (1977) High-performance liquid chromatographic separation and photometric detection of phospholipids. J Chromatogr 142:735–741

    Article  PubMed  CAS  Google Scholar 

  55. Sajiki J (1996) Is phospholipase in vinegar oysters a casual agent for human poisoning? J Toxicol Environ Health 47:221–232

    Article  PubMed  CAS  Google Scholar 

  56. Choi JW, Lee CW, Chun J (2008) Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim Biophys Acta 1781:531–539

    PubMed  CAS  Google Scholar 

  57. Makide K, Kitamura H, Sato Y, Okutani M, Aoki J (2009) Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prost Lip Mediators 89:135–139

    Article  CAS  Google Scholar 

  58. Meylaers K, Clynen E, Daloze D, Deloof A, Schoofs L (2004) Identification of 1-lysophosphatidylethanolamine (C(16:1)) as an antimicrobial compound in the housefly, Musca domestica. Biochem Mol Biol 34:43–49

    CAS  Google Scholar 

  59. Nishina A, Kimura H, Sekiguchi A, Fukumoto RH, Nakajima S, Furukawa S (2006) Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J Lipid Res 47:1434–1443

    Article  PubMed  CAS  Google Scholar 

  60. Park KS, Lee HY, Lee SY (2007) Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett 581:4411–4416

    Article  PubMed  CAS  Google Scholar 

  61. Riekhof WR, Wu J, Jones JL, Voelker DR (2007) Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282:28344–28352

    Article  PubMed  CAS  Google Scholar 

  62. Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thies F, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16:201–204 discussion 215-221

    Article  PubMed  CAS  Google Scholar 

  63. Picq M, Chen P, Perez M, Michaud M, Vericel E, Guichardant M, Lagarde M (2010) DHA metabolism: targeting the brain and lipoxygenation. Mol Neurobiol 42:48–51

    Article  PubMed  CAS  Google Scholar 

  64. Hitz WD, Rhodes D, Hanson AD (1981) Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves. Plant Physiol 68:814–822

    Article  PubMed  CAS  Google Scholar 

  65. Liang CR, Segura LM, Strickla KP (1970) Phospholipid metabolism in molluscs. 2. Activities of choline kinase, ethanolamine kinase, and CTP-phosphorylethanolamine cytidyltransferase in mollusc Helix-lactea. Comp Biochem Physiol 48 B:580

    Google Scholar 

  66. Lubet P, Brichon G, Besnard JY, Zwingelstein G (1986) Sexual differences in the composition and metabolism of lipids in the mantle of the mussel Mytilus galloprovincialis LMK (Mollusca: Bivalvia). Comp Biochem Physiol 84 B:279–285

    Google Scholar 

  67. Weretilnyk EA, Smith DD, Wilch GA, Summers PS (1995) Enzymes of Choline Synthesis in Spinach (Response of Phospho-Base N-Methyltransferase Activities to Light and Salinity). Plant Physiol 109:1085–1091

    PubMed  CAS  Google Scholar 

  68. Zhu X, Song J, Mar MH, Edwards LJ, Zeisel SH (2003) Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochem J 370:987–993

    Article  PubMed  CAS  Google Scholar 

  69. de Vooys CG, Geenevasen JA (2002) Biosynthesis and role in osmoregulation of glycine-betaine in the Mediterranean mussel Mytilus galloprovincialis LMK. Comp Biochem Physiol 132 B:409–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bodennec.

About this article

Cite this article

Athamena, A., Trajkovic-Bodennec, S., Brichon, G. et al. Synthesis of Phosphatidylcholine Through Phosphatidylethanolamine N-Methylation in Tissues of the Mussel Mytilus galloprovincialis . Lipids 46, 1141–1154 (2011). https://doi.org/10.1007/s11745-011-3590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3590-9

Keywords

Navigation