Skip to main content
Log in

Regulation of Phosphatidic Acid Levels in Trypanosoma cruzi

  • Original Article
  • Published:
Lipids

Abstract

Lipid kinases and phosphatases play essential roles in signal transduction processes involved in cytoskeletal rearrangement, membrane trafficking, and cellular differentiation. Phosphatidic acid (PtdOH) is an important mediator lipid in eukaryotic cells, but little is known regarding its regulation in the parasite Trypanosoma cruzi, an agent of Chagas disease. In order to clarify the relationship between PtdOH metabolism and developmental stages of T. cruzi, epimastigotes in culture were subjected to hyperosmotic stress (~1,000 mOsm/L), mimicking the environment in the rectum of vector triatomine bugs. These experimental conditions resulted in differentiation to an intermediate form between epimastigotes and trypomastigotes. Morphological changes of epimastigotes were correlated with an increase in PtdOH mass accomplished by increased enzyme activity of diacylglycerol kinase (DAGK, E.C. 2.7.1.107) and concomitant decreased activity of phosphatidate phosphatases type 1 and type 2 (PAP1, PAP2, E.C. 3.1.3.4). Our results indicate progressive increases of PtdOH levels during the differentiation process, and suggest that the regulation of PtdOH metabolism is an important mechanism in the transition from T. cruzi epimastigote to intermediate form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

DAGK:

Diacylglycerol kinase

DGPP:

Diacylglycerol pyrophosphate

InsP3 :

Inositol 1,4,5-trisphosphate

InsPx:

Total inositol phosphates

LPP:

Lipid phosphate phosphatase

NEM:

N-ethylmaleimide

PAK:

Phosphatidate kinase

PAP:

Phosphatidate phosphatase

PLC:

Phospholipase C

PtdCho:

Phosphatidylcholine

PtdIns:

Phosphatidylinositol

PtdIns-4,5-P2 :

Phosphatidylinositol 4,5-bisphosphate

PtdIns-4-P:

Phosphatidylinositol 4-phosphate

PtdOH:

Phosphatidic acid

TLC:

Thin-layer chromatography

References

  1. Chagas C (1909) Nova tripanozomiase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi, n. gen., n. sp. agente etiológico de nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Article  Google Scholar 

  2. de Souza W (1984) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86:197–283

    Article  PubMed  Google Scholar 

  3. Brener Z (1973) Biology of Trypanosoma cruzi. Ann Rev Microbiol 27:343–382

    Article  Google Scholar 

  4. Dias E (1934) Estudos sobre o Schizotrypanum cruzi. Mem Inst Oswaldo Cruz 28:100–110

    Article  Google Scholar 

  5. Schaub GA (1988) Metacyclogenesis of Trypanosoma cruzi in the vector Triatoma infestans. Mem Inst Oswaldo Cruz 83:563–570

    Article  PubMed  Google Scholar 

  6. Perlowagora-Szumlewicz A, Moreira CJC (1994) In vivo differentiation of Trypanosoma cruzi. I. Experimental evidence of the influence of vector species on metacyclogenesis. Mem Inst Oswaldo Cruz 89:603–618

    Article  PubMed  CAS  Google Scholar 

  7. Cortez MGR, Gonzalez MS, Cabral MMO, Garcia ES, Azambuja P (2002) Dynamic development of Trypanosoma cruzi in Rhodnius prolixus: role of decapitation and ecdysone therapy. Parasitol Res 88:697–703

    PubMed  CAS  Google Scholar 

  8. Carvalho-Moreira CJ, Spata MCD, Coura JR, Garcia ES, Azambuja P, Gonzalez MS, Mello CB (2003) In vivo and in vitro metacyclogenesis tests of two strains of Trypanosoma cruzi in the triatomine vectors Triatoma pseudomaculata and Rhodnius neglectus: short/long-term and comparative study. Exp Parasitol 103:102–111

    Article  PubMed  CAS  Google Scholar 

  9. Bourguignon SC, Mello CB, Santos DO, Gonzalez MS, Souto-Padron T (2006) Biological aspects of the Trypanosoma cruzi (Dm28c clone) intermediate form, between epimastigote and trypomastigote, obtained in modified liver infusion tryptose (LIT) medium. Acta Trop 98:103–109

    Article  PubMed  CAS  Google Scholar 

  10. Schaub GA, Grünfelder CG, Zimmermann D, Peters W (1989) Binding of lectin–gold conjugates by two Trypanosoma cruzi strains in ampullae and rectum of Triatoma infestans. Acta Trop 46:291–301

    Article  PubMed  CAS  Google Scholar 

  11. Asin S, Catalá S (1995) Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 81:1–7

    Article  PubMed  CAS  Google Scholar 

  12. Tyler KM, Engman DM (2000) Flagellar elongation induced by glucose limitation is preadaptive for Trypanosoma cruzi differentiation. Cell Motil Cytoskeleton 46:269–278

    Article  PubMed  CAS  Google Scholar 

  13. Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16:315–327

    Article  PubMed  CAS  Google Scholar 

  14. Machado de Domenech EE, García M, Garrido MN, Racagni G (1992) Phospholipids of Trypanosoma cruzi: increase of polyphosphoinositides and phosphatidic acid after cholinergic stimulation. FEMS Microbiol Lett 95:267–270

    CAS  Google Scholar 

  15. Marchesini N, Santander V, Machado-Domenech E (1998) Diacylglycerol pyrophosphate: a novel metabolite in the Trypanosoma cruzi phosphatidic acid metabolism. FEBS Lett 436:377–381

    Article  PubMed  CAS  Google Scholar 

  16. Santander V, Bollo M, Machado-Domenech E (2002) Lipid kinases and Ca2+ signaling in Trypanosoma cruzi stimulated by a synthetic peptide. Biochem Biophys Res Commun 293:314–320

    Article  PubMed  CAS  Google Scholar 

  17. Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  PubMed  CAS  Google Scholar 

  18. Brindley DN, Pilquil C, Sariahmetoglu M, Reue K (2009) Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochim Biophys Acta 1791:956–961

    PubMed  CAS  Google Scholar 

  19. van Schooten B, Testerink C, Munnik T (2006) Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim Biophys Acta 1761:151–159

    PubMed  Google Scholar 

  20. Fraindenraich D, Peña C, Isola EL, Lammel EL, Coso O, Diaz Añel A, Pongors S, Baralle F, Torres H, Flawiá M (1993) Stimulation of Trypanosoma cruzi adenyl cyclase by an αd-globin fragment from Triatoma hindgut: effect on differentiation of epimastigote and trypomastigote forms. Proc Natl Acad Sci 90:10140–10144

    Article  Google Scholar 

  21. Warren LG (1960) Metabolism of Schizotrypanum cruzi Chagas. I. Effect of culture age and substrate concentration on respiratory rate. J Parasitol 46:429–539

    Article  Google Scholar 

  22. Marchesini N, Bollo M, Hernández G, Garrido MN, Machado-Domenech E (2002) Cellular signalling in Trypanosoma cruzi: biphasic behaviour of inositol phosphate cycle components evoked by carbachol. Mol Biochem Parasitol 120:83–91

    Article  PubMed  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  25. Garrido MN, Bollo MI, Machado-Domenech EE (1996) Biphasic and dose-dependent accumulation of InsP3 in Trypanosoma cruzi stimulated by a synthetic peptide carrying a chicken αd-globin fragment. Cell Mol Biol 42:859–864

    PubMed  CAS  Google Scholar 

  26. Pasquaré de García SJ, Giusto NM (1986) Phosphatidate phosphatase activity in isolated rod outer segment from bovine retina. Biochim Biophys Acta 875:195–202

    PubMed  Google Scholar 

  27. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  28. Jamal Z, Martin A, Gomez-Muñoz A, Brindley DN (1991) Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem 266:2988–2996

    PubMed  CAS  Google Scholar 

  29. Hooks SB, Ragan SP, Lynch KR (1998) Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett 427:188–192

    Article  PubMed  CAS  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  31. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  32. Saitou N, Nei M (1997) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  33. Racagni G, Villasuso AL, Pasquaré SJ, Giusto NM, Machado E (2008) Diacylglycerol pyrophosphate inhibits the α-amylase secretion stimulated by gibberellic acid in barley aleurone. Physiol Plant 134:381–393

    Article  PubMed  CAS  Google Scholar 

  34. Cai J, Abramovici H, Gee SH, Topham MK (2009) Diacylglycerol kinases as sources of phosphatidic acid. Biochim Biophys Acta 1791:942–948

    PubMed  CAS  Google Scholar 

  35. Tang W, Bunting M, Zimmerman GA, McIntyre TM, Prescott SM (1996) Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Biol Chem 271:10237–10241

    Article  PubMed  CAS  Google Scholar 

  36. Villasuso AL, Aveldaño M, Vicario A, Machado-Domenech EE, García de Lema M (2005) Culture age and carbamoylcholine increase the incorporation of endogenously synthesized linoleic acid in lipids of Trypanosoma cruzi epimastigotes. Biochim Biophys Acta 1735:185–191

    PubMed  CAS  Google Scholar 

  37. Racagni G, García de Lema M, Domenech CE, Machado de Domenech EE (1992) Phospholipids in Trypanosoma cruzi: phosphoinositide composition and turnover. Lipids 27:275–278

    Article  PubMed  CAS  Google Scholar 

  38. Rasooly R, Balaban N (2002) Structure of p15 trypanosome microtubule associated protein. Parasitol Res 88:1034–1039

    Article  PubMed  Google Scholar 

  39. Smith TK, Bütikofer P (2010) Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol 172:66–79

    Article  PubMed  CAS  Google Scholar 

  40. Stukey J, Carman GM (1997) Identification of a novel phosphatase sequence motif. Protein Sci 6:469–472

    Article  PubMed  CAS  Google Scholar 

  41. Toke DA, McClintick ML, Carman GM (1999) Mutagenesis of the phosphatase sequence motif in diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. Biochemistry 38:14606–14613

    Article  PubMed  CAS  Google Scholar 

  42. Zhang QX, Pilquil CS, Dewald J, Berthiaume LG, Brindley DN (2000) Identification of structurally important domains of lipid phosphate phosphatase-1: implications for its sites of action. Biochem J 345:181–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FONCyT (BID 1728 OC/AR PICT 2007-02212) Buenos Aires, Argentina and SECyT, UNRC, Río Cuarto, Córdoba, Argentina. A.M. Gimenez is a fellow of CONICET. V.S. Santander and A.L. Villasuso are Career Investigators of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela E. Machado.

Additional information

V.S. Santander and A.L. Villasuso contributed equally to the work reported in this article.

About this article

Cite this article

Gimenez, A.M., Santander, V.S., Villasuso, A.L. et al. Regulation of Phosphatidic Acid Levels in Trypanosoma cruzi . Lipids 46, 969–979 (2011). https://doi.org/10.1007/s11745-011-3577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3577-6

Keywords

Navigation