Skip to main content
Log in

Vaccenic and Elaidic Acid Equally Esterify into Triacylglycerols, but Differently into Phospholipids of Fed Rat Liver Cells

  • Original Article
  • Published:
Lipids

Abstract

Elaidic acid (trans-9-C18:1 or trans-9) is assumed to exert atherogenic effects due to its double bond configuration. The possibility that trans-9 and vaccenic acid (trans-11-C18:1 or trans-11), its positional isomer, were biochemically equivalent and interchangeable compounds, was investigated by reference to their cis-isomers through esterification-related activities using rat liver cells and subcellular fractions. In hepatocytes, both trans-C18:1 were incorporated to the same extent in triacylglycerols, but trans-9 was more esterified than trans-11 into phospholipids (P < 0.05). Glycerol-3-phosphate acyltransferase activity in microsomes was lower with trans-11 than with trans-9, while this activity in mitochondria was ~40% greater with trans-11 than with trans-9 (P < 0.05). Activity of 2-lysophosphatidic acid acyltransferase in microsomes was of comparable extent with both trans isomers, but activity of 2-lysophosphatidylcholine acyltransferase was significantly greater with trans-9 than with trans-11 at P < 0.01. Lipoproteins secreted by hepatocytes reached equivalent levels in the presence of any isomers, but triacylglycerol production was more elevated with trans-11 than with trans-9 at P < 0.05. Cholesterol efflux from previously labelled hepatocytes was lower with trans-11 than with trans-9. When these cells were exposed to either trans-C18:1, the gene expression of proteins involved in fatty acid esterification and lipoprotein synthesis was unaffected, which indicates that the biochemical differences essentially depended on enzyme/substrate affinities. On the whole, vaccenic and elaidic acid were shown to incorporate cell phospholipids unequally, at least in vitro, which suggests they can differently affect lipid metabolic pathways in normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

cis-9:

cis-9-C18:1, oleic acid

cis-11:

cis-11-C18:1

CLA:

Conjugated linoleic acid

DGAT:

Diacylglycerol acyltransferase

FA:

Fatty acid

GPAT:

Glycerol-3-phosphate acyltransferase

HMG-Red:

Hydroxymethylglutaryl-CoA reductase

LDL-R:

Low-density lipoprotein-receptor

mtGPAT:

Mitochondrial GPAT

trans-9:

trans-9-C18:1, elaidic acid

trans-11:

trans-11-C18:1, vaccenic acid

References

  1. Ascherio A, Katan MB, Zock PL, Stampfer MJ, Willett WC (1999) Trans fatty acids and coronary heart disease. N Engl J Med 340:1994–1998

    Article  PubMed  CAS  Google Scholar 

  2. Nelson GJ (1998) Dietary fat, trans fatty acids, and risk of coronary heart disease. Nutr Rev 56:250–252

    Article  PubMed  CAS  Google Scholar 

  3. Constant J (2004) The role of eggs, margarines and fish oils in the nutritional management of coronary artery disease and strokes. Keio J Med 53:131–136

    Article  PubMed  CAS  Google Scholar 

  4. Schwandt P (1995) Trans-fatty acids and atherosclerosis. Med Monatsschr Pharm 18:78–79

    PubMed  CAS  Google Scholar 

  5. Ackman RG, Mag TK (1998) Trans fatty acids and the potential for less in technical products. In: Sébédio JL, Christie WW (eds) Trans fatty acids in human nutrition. The Oily Press, Dundee

  6. Chardigny JM, Destaillats F, Malpuech-Brugere C, Moulin J, Bauman DE, Lock AL, Barbano DM, Mensink RP, Bezelgues JB, Chaumont P, Combe N, Cristiani I, Joffre F, German JB, Dionisi F, Boirie Y, Sebedio JL (2008) Do trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans fatty acids collaboration (Transfact) study. Am J Clin Nutr 87:558–566

    PubMed  CAS  Google Scholar 

  7. Wolff RL, Combe NA, Destaillats F, Boue C, Precht D, Molkentin J, Entressangles B (2000) Follow-up of the Δ4 to Δ16 trans-18:1 isomer profile and content in french processed foods containing partially hydrogenated vegetable oils during the period 1995–1999. Analytical and nutritional implications. Lipids 35:815–825

    Article  PubMed  CAS  Google Scholar 

  8. Whayne TF, Alaupovic P, Curry MD, Lee ET, Anderson PS, Schechter E (1981) Plasma apolipoprotein B and VLDL-, LDL-, and HDL-cholesterol as risk factors in the development of coronary artery disease in male patients examined by angiography. Atherosclerosis 39:411–424

    Article  PubMed  CAS  Google Scholar 

  9. Ledoux M, Rouzeau A, Bas P, Sauvant D (2002) Occurrence of trans-C18:1 fatty acid isomers in goat milk: effect of two dietary regimens. J Dairy Sci 85:190–197

    Article  PubMed  CAS  Google Scholar 

  10. Precht D, Molkentin J (1997) Effect of feeding on trans positional isomers of octadecenoic acid in milk fats. Milchwissenschaft 52:564–568

    CAS  Google Scholar 

  11. Ascherio A, Hennekens CH, Buring JE, Master C, Stampfer MJ, Willett WC (1994) Trans-fatty acids intake and risk of myocardial infarction. Circulation 89:94–101

    PubMed  CAS  Google Scholar 

  12. Bolton-Smith C, Woodward M, Fenton S, Brown CA (1996) Does dietary trans fatty acid intake relate to the prevalence of coronary heart disease in Scotland ? Eur Heart J 17:837–845

    PubMed  CAS  Google Scholar 

  13. Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341:581–585

    Article  PubMed  CAS  Google Scholar 

  14. Meijer GW, van Tol A, van Berkel TJ, Weststrate JA (2001) Effect of dietary elaidic versus vaccenic acid on blood and liver lipids in the Hamster. Atherosclerosis 157:31–40

    Article  PubMed  CAS  Google Scholar 

  15. Tyburczy C, Major C, Lock AL, Destaillats F, Lawrence P, Brenna JT, Salter AM, Bauman DE (2009) Individual trans octadecenoic acids and partially hydrogenated vegetable oil differentially affect hepatic lipid and lipoprotein metabolism in Golden Syrian Hamsters. J Nutr 139:257–263

    PubMed  CAS  Google Scholar 

  16. Motard-Belanger A, Charest A, Grenier G, Paquin P, Chouinard Y, Lemieux S, Couture P, Lamarche B (2008) Study of the effect of trans fatty acids from ruminants on blood lipids and other risk factors for cardiovascular disease. Am J Clin Nutr 87:593–599

    PubMed  CAS  Google Scholar 

  17. Jensen RG, Sampugna J, Pereira RL (1964) Pancreatic lipase. Lipolysis of synthetic triglycerides containing a trans fatty acid. Biochim Biophys Acta 84:481–483

    PubMed  CAS  Google Scholar 

  18. Coots RH (1964) A comparison of the metabolism of elaidic, oleic, palmitic, and stearic acids in the rat. J Lipid Res 5:468–472

    PubMed  CAS  Google Scholar 

  19. Du ZY, Degrace P, Gresti J, Loreau O, Clouet P (2010) Dissimilar properties of vaccenic versus elaidic acid in beta-oxidation activities and gene regulation in rat liver cells. Lipids 45:581–591

    Article  PubMed  CAS  Google Scholar 

  20. Yu W, Liang X, Ensenauer RE, Vockley J, Sweetman L, Schulz H (2004) Leaky beta-oxidation of a trans-fatty acid: incomplete beta-oxidation of elaidic acid is due to the accumulation of 5-trans-tetradecenoyl-CoA and its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine in the matrix of rat mitochondria. J Biol Chem 279:52160–52167

    Article  PubMed  CAS  Google Scholar 

  21. Høy CE, Hølmer G (1979) Incorporation of cis- and trans-octadecenoic acids into the membranes of rat liver mitochondria. Lipids 14:727–733

    Article  PubMed  Google Scholar 

  22. Channing MA, Simpson N (1993) Radiosynthesis of [1–11C] polyhomoallylic fatty acids. J Label Compd Radiopharm 33:541–546

    Article  CAS  Google Scholar 

  23. Goldman P, Vagelos PR (1961) The Specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem 236:2620–2623

    PubMed  CAS  Google Scholar 

  24. Korsrud GO, Conacher HB, Jarvis GA, Beare-Rogers JL (1977) Studies on long chain cis- and trans-acyl-CoA esters and acyl-CoA dehydrogenase from rat heart mitochondria. Lipids 12:177–181

    Article  PubMed  CAS  Google Scholar 

  25. Lawson LD, Kummerow FA (1979) Beta-oxidation of the coenzyme A esters of elaidic, oleic, and stearic acids and their full-cycle intermediates by rat heart mitochondria. Biochim Biophys Acta 573:245–254

    PubMed  CAS  Google Scholar 

  26. Lawson LD, Kummerow FA (1979) Beta-oxidation of the coenzyme A esters of vaccenic, elaidic, and petroselaidic acids by rat heart mitochondria. Lipids 14:501–503

    Article  PubMed  CAS  Google Scholar 

  27. Seglen PO (1973) Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res 82:391–398

    Article  PubMed  CAS  Google Scholar 

  28. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  29. Demizieux L, Degrace P, Gresti J, Loreau O, Noel JP, Chardigny JM, Sebedio JL, Clouet P (2002) Conjugated linoleic acid isomers in mitochondria: evidence for an alteration of fatty acid oxidation. J Lipid Res 43:2112–2122

    Article  PubMed  CAS  Google Scholar 

  30. Niot I, Pacot F, Bouchard P, Gresti J, Bernard A, Bezard J, Clouet P (1994) Involvement of microsomal vesicles in part of the sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition in mitochondrial fractions of rat liver. Biochem J 304:577–584

    PubMed  CAS  Google Scholar 

  31. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  32. Bates EJ, Saggerson D (1977) A selective decrease in mitochondrial glycerol phosphate acyltransferase activity in livers from streptozotocin-diabetic rats. FEBS Lett 84:229–232

    Article  PubMed  CAS  Google Scholar 

  33. Okuyama H, Eibl H, Lands WE (1971) Acyl coenzyme A:2-acyl-sn-glycerol-3-phosphate acyltransferase activity in rat liver microsomes. Biochim Biophys Acta 248:263–273

    PubMed  CAS  Google Scholar 

  34. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  35. McGarry JD, Woeltje KF, Kuwajima M, Foster DW (1989) Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 5:271–284

    Article  PubMed  CAS  Google Scholar 

  36. Bickerstaffe R, Annison EF (1970) Lipid metabolism in the perfused chicken liver. The uptake and metabolism of oleic acid, elaidic acid, cis-vaccenic acid, trans-vaccenic acid and stearic acid. Biochem J 118:433–442

    PubMed  CAS  Google Scholar 

  37. Wolff RL, Entressangles B (1994) Steady-state fluorescence polarization study of structurally defined phospholipids from liver mitochondria of rats fed elaidic acid. Biochim Biophys Acta 1211:198–206

    PubMed  CAS  Google Scholar 

  38. Woldseth B, Retterstol K, Christophersen BO (1998) Monounsaturated trans fatty acids, elaidic acid and trans-vaccenic acid, metabolism and incorporation in phospholipid molecular species in hepatocytes. Scand J Clin Lab Invest 58:635–645

    Article  PubMed  CAS  Google Scholar 

  39. Casaschi A, Maiyoh GK, Adeli K, Theriault AG (2005) Increased diacylglycerol acyltransferase activity is associated with triglyceride accumulation in tissues of diet-induced insulin-resistant hyperlipidemic Hamsters. Metabolism 54:403–409

    Article  PubMed  CAS  Google Scholar 

  40. Degrace P, Demizieux L, Du ZY, Gresti J, Caverot L, Djaouti L, Jourdan T, Moindrot B, Guilland JC, Hocquette JF, Clouet P (2007) Regulation of lipid flux between liver and adipose tissue during transient hepatic steatosis in carnitine-depleted rats. J Biol Chem 282:20816–20826

    Article  PubMed  CAS  Google Scholar 

  41. Sul HS, Wang D (1998) Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 18:331–351

    Article  PubMed  CAS  Google Scholar 

  42. Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296:E1195–E1209

    Article  PubMed  CAS  Google Scholar 

  43. Hornick CA, Thouron C, DeLamatre JG, Huang J (1992) Triacylglycerol hydrolysis in isolated hepatic endosomes. J Biol Chem 267:3396–3401

    PubMed  CAS  Google Scholar 

  44. Malewiak MI, Rozen R, Le Liepvre X, Griglio S (1988) Oleate metabolism and endogenous triacylglycerol hydrolysis in isolated hepatocytes from rats fed a high-fat diet. Diabete Metab 14:270–276

    PubMed  CAS  Google Scholar 

  45. Newkirk JD, Waite M (1973) Phospholipid hydrolysis by phospholipase A 1 and A 2 in plasma membranes and microsomes of rat liver. Biochim Biophys Acta 298:562–576

    Article  PubMed  CAS  Google Scholar 

  46. Pykalisto OJ, Vogel WC, Bierman EL (1974) The tissue distribution of triacylglycerol lipase, monoacylglycerol lipase and phospholipase A in fed and fasted rats. Biochim Biophys Acta 369:254–263

    PubMed  CAS  Google Scholar 

  47. Franson R, Waite M, LaVia M (1971) Identification of phospholipase A 1 and A 2 in the soluble fraction of rat liver lysosomes. Biochemistry 10:1942–1946

    Article  PubMed  CAS  Google Scholar 

  48. McGarry JD, Meier JM, Foster DW (1973) The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis. J Biol Chem 248:270–278

    PubMed  CAS  Google Scholar 

  49. Mahfouz MM, Valicenti AJ, Holman RT (1980) Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes. Biochim Biophys Acta 618:1–12

    PubMed  CAS  Google Scholar 

  50. Kraft J, Hanske L, Möckel P, Zimmermann S, Härtl A, Kramer JK, Jahreis G (2006) The conversion efficiency of trans-11 and trans-12 18:1 by delta9-desaturation differs in rats. J Nutr 136:1209–1214

    PubMed  CAS  Google Scholar 

  51. Kramer JK, Sehat N, Dugan ME, Mossoba MM, Yurawecz MP, Roach JA, Eulitz K, Aalhus JL, Schaefer AL, Ku Y (1998) Distributions of conjugated linoleic acid (CLA) isomers in lipid tissue classes of pigs fed a commercial CLA mixture determined by gas chromatography and silver ion-high-performance liquid chromatography. Lipids 33:549–558

    Article  PubMed  CAS  Google Scholar 

  52. Gruffat D, De La Torre A, Chardigny JM, Durand D, Loreau O, Bauchart D (2005) Vaccenic acid metabolism in the liver of rat and bovine. Lipids 40:295–301

    Article  PubMed  CAS  Google Scholar 

  53. Subbaiah PV, Gould IG, Lal S, Aizezi B (2011) Incorporation profiles of conjugated linoleic acid isomers in cell membranes and their positional distribution in phospholipids. Biochim Biophys Acta 1811:17–24

    PubMed  CAS  Google Scholar 

  54. Beauseigneur F, Tsoko M, Gresti J, Clouet P (1999) Reciprocal enzymatic interference of carnitine palmitoyltransferase I and glycerol-3-phosphate acyltransferase in purified liver mitochondria. Adv Exp Med Biol 466:69–78

    Article  PubMed  CAS  Google Scholar 

  55. Sugimoto H, Yamashita S (1994) Purification, characterization, and inhibition by phosphatidic acid of lysophospholipase transacylase from rat liver. J Biol Chem 269:6252–6258

    PubMed  CAS  Google Scholar 

  56. Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem 122:1–16

    PubMed  CAS  Google Scholar 

  57. Colard O, Bard D, Bereziat G, Polonovski J (1980) Acylation of endogenous phospholipids and added lyso derivatives by rat liver plasma membranes. Biochim Biophys Acta 618:88–97

    PubMed  CAS  Google Scholar 

  58. Hasegawa-Sasaki H, Ohno K (1980) Extraction and partial purification of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine acyltransferase from rat liver microsomes. Biochim Biophys Acta 617:205–217

    PubMed  CAS  Google Scholar 

  59. Patsch W, Tamai T, Schonfeld G (1983) Effect of fatty acids on lipid and apoprotein secretion and association in hepatocyte cultures. J Clin Invest 72:371–378

    Article  PubMed  CAS  Google Scholar 

  60. Sparks CE, Sparks JD, Bolognino M, Salhanick A, Strumph PS, Amatruda JM (1986) Insulin effects on apolipoprotein B lipoprotein synthesis and secretion by primary cultures of rat hepatocytes. Metabolism 35:1128–1136

    Article  PubMed  CAS  Google Scholar 

  61. Kalopissis AD, Griglio S, Malewiak MI, Rozen R, Liepvre XL (1981) Very-low-density-lipoprotein secretion by isolated hepatocytes of fat-fed rats. Biochem J 198:373–377

    PubMed  CAS  Google Scholar 

  62. Wang Y, Jacome-Sosa MM, Ruth MR, Goruk SD, Reaney MJ, Glimm DR, Wright DC, Vine DF, Field CJ, Proctor SD (2009) trans-11 vaccenic acid reduces hepatic lipogenesis and chylomicron secretion in JCR:LA-cp rats. J Nutr 139:2049–2054

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr Jean-Michel Chardigny DR INRA, Mr Koenraad Duhem, Mrs Corinne Marmonier for helpful discussions, and Mrs Monique Baudoin for figure construction and typing of the manuscript. This work was supported by Grants from the CNIEL (Paris) and the Région Bourgogne (Dijon), France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Clouet.

About this article

Cite this article

Du, ZY., Degrace, P., Gresti, J. et al. Vaccenic and Elaidic Acid Equally Esterify into Triacylglycerols, but Differently into Phospholipids of Fed Rat Liver Cells. Lipids 46, 647–657 (2011). https://doi.org/10.1007/s11745-011-3569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3569-6

Keywords

Navigation