Skip to main content

Oxidative Stability of Marine Phospholipids in the Liposomal Form and Their Applications


Marine phospholipids (MPL) have attracted a great deal of attention recently as they are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil) from the same source. Due to their tight intermolecular packing conformation at the sn-2 position and their synergism with α-tocopherol present in MPL extracts, they can form stable liposomes which are attractive ingredients for food or feed applications. However, MPL are still susceptible to oxidation as they contain large amounts polyunsaturated fatty acids and application of MPL in food and aquaculture industries is therefore a great challenge for researchers. Hence, knowledge on the oxidative stability of MPL and the behavior of MPL in food and feed systems is an important issue. For this reason, this review was undertaken to provide the industry and academia with an overview of (1) the stability of MPL in different forms and their potential as liposomal material, and (2) the current applications and future prospects of MPL in both food and aquaculture industries with special emphasis on MPL in the liposomal form.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Arachidonic acid


Butylated hydroxytoluene








Docosahexaenoic acid


Diacetyl phosphate


Encapsulation efficiency


Essential fatty acid


Eicosapentaenoic acid


Linoleic Acid




Large unilamellar vesicles


Multilamellar vesicles


Marine phospholipids

n-3 PUFA:

Omega-3 polyunsaturated fatty acid(s)


Palmitic acid




















Total lipids


Neutral lipids


  1. 1.

    Okuyama H (2001) High n-6 to n-3 ratio of dietary fatty acids rather than serum cholesterol as a major risk factor for coronary heart disease. Eur J Lipid Sci Technol 103:418–422

    CAS  Article  Google Scholar 

  2. 2.

    Hibbeln JR, Nieminen LRG, Blasbalg TL, Riggs JA, Lands WEM (2006) Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83:1483S–1493S

    CAS  PubMed  Google Scholar 

  3. 3.

    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    CAS  Article  Google Scholar 

  4. 4.

    Løvaas E (2006) Marine phospholipids (MPL) resources, applications and markets. In: Luten JB, Jacobsen C, Bekaert K, Saebo A, Oehlenschlager J (eds) Seafood research from fish to dish, 1st ed. edn. Wageningen Academic Publishers, The Netherlands, pp 17–28

    Google Scholar 

  5. 5.

    Neptune Technologies & Bioresources (2001) Natural phospholipids of marine origin containing flavonoids and polyunsaturated phospholipids and their uses [EP 1417211]

  6. 6.

    Nara E, Miyashita K, Ota T (1997) Oxidative stability of liposomes prepared from soybean PC, chicken egg PC, and salmon egg PC. Biosci Biotechnol Biochem 61:1736–1738

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Nara E, Miyashita K, Ota T, Nadachi Y (1998) The oxidative stabilities of polyunsaturated fatty acids in salmon egg phosphatidylcholine liposomes. Fish Sci 64:282–286

    CAS  Google Scholar 

  8. 8.

    Araseki M, Yamamoto K, Miyashita K (2002) Oxidative stability of polyunsaturated fatty acid in phosphatidylcholine liposomes. Biosci Biotechol Biochem 66:2573–2577

    CAS  Article  Google Scholar 

  9. 9.

    Lyberg AM, Fasoli E, Adlercreutz P (2005) Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids 40:969–979

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Jacobsen C (2008) Omega-3s in food emulsions: overview and case studies. Agro Food Ind Hi Tech 19:9–12

    CAS  Google Scholar 

  11. 11.

    Rodriguez-Nogales JM, Perez-Mateos M, Busto MD (2004) Application of experimental design to the formulation of glucose oxidase encapsulation by liposomes. J Chem Technol Biotechnol 79:700–705

    CAS  Article  Google Scholar 

  12. 12.

    Xia SQ, Xu SY (2005) Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int 38:289–296

    CAS  Article  Google Scholar 

  13. 13.

    Taylor TM, Gaysinsky S, Davidson PM, Bruce BD, Weiss J (2007) Characterization of antimicrobial-bearing liposomes by zeta-potential, vesicle size, and encapsulation efficiency. Food Biophys 2:1–9

    Article  Google Scholar 

  14. 14.

    Mcevoy LA, Navarro JC, Hontoria F, Amat F, Sargent JR (1996) Two novel Artemia enrichment diets containing polar lipid. Aquaculture 144:339–352

    CAS  Article  Google Scholar 

  15. 15.

    Monroig O, Navarro JC, Amat I, Gonzalez P, Amat F, Hontoria F (2003) Enrichment of Artemia nauplii in PUFA, phospholipids, and water-soluble nutrients using liposomes. Aquacult Int 11:151–161

    CAS  Article  Google Scholar 

  16. 16.

    Monroig O, Navarro JC, Amat F, Gonzalez P, Hontoria F (2007) Oxidative stability and changes in the particle size of liposomes used in the Artemia enrichment. Aquaculture 266:200–210

    CAS  Article  Google Scholar 

  17. 17.

    Monroig O, Navarro JC, Amat F, Gonzalez P, Hontoria F (2006) Effects of nauplial density, product concentration and product dosage on the survival of the nauplii and EFA incorporation during Artemia enrichment with liposomes. Aquaculture 261:659–669

    CAS  Article  Google Scholar 

  18. 18.

    Monroig O, Navarro JC, Amat F, Gonzalez P, Bermejo A, Hontoria F (2006) Enrichment of Artemia nauplii in essential fatty acids with different types of liposomes and their use in the rearing of gilthead sea bream (Sparus aurata) larvae. Aquaculture 251:491–508

    CAS  Article  Google Scholar 

  19. 19.

    Monroig O, Navarro JC, Amat F, Hontoria F (2007) Enrichment of Artemia nauplii in vitamin A, vitamin C and methionine using liposomes. Aquaculture 269:504–513

    CAS  Article  Google Scholar 

  20. 20.

    Cansell M, Moussaoui N, Lefrancois C (2001) Stability of marine lipid based-liposomes under acid conditions. Influence of xanthan gum. J Liposome Res 11:229–242

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Cho SY, Joo DS, Choi HG, Nara E, Miyashita K (2001) Oxidative stability of lipids from squid tissues. Fish Sci 67:738–743

    CAS  Article  Google Scholar 

  22. 22.

    Mozuraityte R, Rustad T, Storro I (2006) Pro-oxidant activity of Fe2+ in oxidation of cod phospholipids in liposomes. Eur J Lipid Sci Technol 108:218–226

    CAS  Article  Google Scholar 

  23. 23.

    Mozuraityte R, Rustad T, Storro I (2006) Oxidation of cod phospholipids in liposomes: effects of salts, pH and zeta potential. Eur J Lipid Sci Technol 108:944–950

    CAS  Article  Google Scholar 

  24. 24.

    Mozuraityte R, Rustad T, Storro I (2008) The role of iron in peroxidation of polyunsaturated fatty acids in liposomes. J Agric Food Chem 56:537–543

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Moriya H, Kuniminato T, Hosokawa M, Fukunaga K, Nishiyama T, Miyashita K (2007) Oxidative stability of salmon and herring roe lipids and their dietary effect on plasma cholesterol levels of rats. Fish Sci 73:668–674

    CAS  Article  Google Scholar 

  26. 26.

    Nacka F, Cansell M, Meleard P, Combe N (2001) Incorporation of alpha-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids 36:1313–1320

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Nacka F, Cansell M, Gouygou JP, Gerbeaud C, Meleard P, Entressangles B (2001) Physical and chemical stability of marine lipid-based liposomes under acid conditions. Colloids Surf B 20:257–266

    CAS  Article  Google Scholar 

  28. 28.

    Nacka F, Cansell M, Entressangles B (2001) In vitro behavior of marine lipid-based liposomes, influence of pH, temperature, bile salts, and phospholipase A(2). Lipids 36:35–42

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Arnaud JP (1995) Liposomes in the agro food-industry. Agro Food Ind Hi Tech 6:30–36

    CAS  Google Scholar 

  30. 30.

    Falch E, Rustad T, Jonsdottir R, Shaw NB, Dumay J, Berge JP, Arason S, Kerry JP, Sandbakk M, Aursand M (2006) Geographical and seasonal differences in lipid composition and relative weight of by-products from gadiform species. J Food Compost Anal 19:727–736

    CAS  Article  Google Scholar 

  31. 31.

    Gbogouri GA, Linder M, Fanni J, Parmentier M (2006) Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. Eur J Lipid Sci Technol 108:766–775

    CAS  Article  Google Scholar 

  32. 32.

    Striby L, Lafont R, Goutx M (1999) Improvement in the Iatroscan thin-layer chromatographic-flame ionisation detection analysis of marine lipids. Separation and quantitation of monoacylglycerols and diacylglycerols in standards and natural samples. J Chromatogr A 849:371–380

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Medina I, Aubourg SP, Martin RP (1995) Composition of phospholipids of white muscle of 6 tuna species. Lipids 30:1127–1135

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Body DR, Vlieg P (1989) Distribution of the lipid classes and eicosapentaenoic (20-5) and docosahexaenoic (22-6) acids in different sites in blue mackerel (Scomber australasicus) fillets. J Food Sci 54:569–572

    CAS  Article  Google Scholar 

  35. 35.

    Hazel JR (1985) Determination of the phospholipid-composition of trout gill by Iatroscan TLC/FID—effect of thermal-acclimation. Lipids 20:516–520

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Schneider M (2008) Major sources, composition and processing. In: Gunstone FD (ed) Phospholipid technoloy and applications. The Oily Press, Bridgewater, pp 21–40

    Google Scholar 

  37. 37.

    Saito H, Kotani Y, Keriko JM, Xue CH, Taki K, Ishihara K, Ueda T, Miyata S (2002) High levels of n-3 polyunsaturated fatty acids in Euphausia pacifica and its role as a source of docosahexaenoic and icosapentaenoic acids for higher trophic levels. Mar Chem 78:9–28

    CAS  Article  Google Scholar 

  38. 38.

    Le Grandois J, Marchioni E, Zhao MJ, Giuffrida F, Ennahar S, Bindler F (2009) Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI-MS2) of molecular species. J Agric Food Chem 57:6014–6020

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Boselli E, Caboni MF (2000) Supercritical carbon dioxide extraction of phospholipids from dried egg yolk without organic modifier. J Supercrit Fluids 19:45–50

    CAS  Article  Google Scholar 

  40. 40.

    Kang KY, Ahn DH, Jung SM, Kim DH, Chun BS (2005) Separation of protein and fatty acids from tuna viscera using supercritical carbon dioxide. Biotechnol Bioprocess Eng 10:315–321

    CAS  Article  Google Scholar 

  41. 41.

    Letisse M, Rozieres M, Hiol A, Sergent M, Comeau L (2006) Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier—I. Optimization of extraction conditions. J Supercrit Fluids 38:27–36

    CAS  Article  Google Scholar 

  42. 42.

    Aro H, Jarvenpaa E, Konko K, Sihvonen M, Hietaniemi V, Huopalahti R (2009) Isolation and purification of egg yolk phospholipids using liquid extraction and pilot-scale supercritical fluid techniques. Eur J Lipid Sci Technol 228:857–863

    CAS  Google Scholar 

  43. 43.

    Froning GW, Wehling RL, Cuppett SL, Pierce MM, Niemann L, Siekman DK (1990) Extraction of cholesterol and other lipids from dried egg-yolk using supercritical carbon dioxide. J Food Sci 55:95–98

    CAS  Article  Google Scholar 

  44. 44.

    Rossi M, Spedicato E, Shiraldi A (1990) Improvement of supercritical carbon dioxide extraction of egg lipids by means of ethanolic entrainer. Ital J Food Sci 2:249–256

    Google Scholar 

  45. 45.

    Lemaitre-Delaunay D, Pachiaudi C, Laville M, Pousin J, Armstrong M, Lagarde M (1999) Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [C−13]DHA in phosphatidylcholine. J Lipid Res 40:1867–1874

    CAS  PubMed  Google Scholar 

  46. 46.

    Amate L, Gil A, Ramirez M (2001) Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions. J Nutr 131:1250–1255

    CAS  PubMed  Google Scholar 

  47. 47.

    Wijendran V, Huang MC, Diau GY, Boehm G, Nathanielsz PW, Brenna JT (2002) Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatr Res 51:265–272

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Peng JL, Larondelle Y, Pham D, Ackman RG, Rollin X (2003) Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp Biochem Phys B 134:335–348

    Article  Google Scholar 

  49. 49.

    Phares Pharmaceutical Research N.V. (2004) Marine Lipid Compositions [WO/2004/047554]

  50. 50.

    Narayan B, Miyashita K, Hosakawa M (2006) Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—a review. Food Rev Int 22:291–307

    CAS  Article  Google Scholar 

  51. 51.

    Leaf A (2008) Historical overview of n-3 fatty acids and coronary heart disease. Am J Clin Nutr 87:1978S–1980S

    CAS  PubMed  Google Scholar 

  52. 52.

    Virtanen JK, Mozaffarian D, Chiuve SE, Rimm EB (2008) Fish consumption and risk of major chronic disease in men. Am J Clin Nutr 88:1618–1625

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Calon F, Cicchetti F (2009) Omega-3 fatty acid in Parkinson disease. Agro Food Ind Hi Tech 20:7–9

    CAS  Google Scholar 

  54. 54.

    Fotuhi M, Mohassel P, Yaffe K (2009) Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol 5:140–152

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Ramakrishnan U, Imhoff-Kunsch B, DiGirolamo AM (2009) Role of docosahexaenoic acid in maternal and child mental health. Am J Clin Nutr 89:958S–962S

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Boudrault C, Bazinet RP, Ma DWL (2009) Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer’s disease. J Nutr Biochem 20:1–10

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Tinoco SMB, Sichieri R, Setta CL, Moura AS, Do Carmo MGT (2009) n-3 polyunsaturated fatty acids in milk is associate to weight gain and growth in premature infants. Lipids Health Dis 8:23

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Lopez-Huertas E (2010) Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res 61:200–207

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Wilson TA, Meservey CM, Nicolosi RJ (1998) Soy lecithin reduces plasma lipoprotein cholesterol and early atherogenesis in hypercholesterolemic monkeys and hamsters: beyond linoleate. Atherosclerosis 140:147–153

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Zeisel SH (1992) Choline—an important nutrient in brain-development, liver-function and carcinogenesis. J Am Coll Nutr 11:473–481

    CAS  PubMed  Google Scholar 

  62. 62.

    Pharmacia AB (1995) Phospholipids containing omega-3 fatty acids [US Patent 5434183]

  63. 63.

    Bunea R, El Farrah K, Deutsch L (2004) Evaluation of the effects of Neptune krill oil on the clinical course of hyperlipidemia. Altern Med Rev 9:420–428

    PubMed  Google Scholar 

  64. 64.

    Maki KC, Reeves MS, Farmer M, Griinari M, Berge K, Vik H, Hubacher R, Rains TM (2009) Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. Nutr Res 29:609–615

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Tandy S, Chung RWS, Wat E, Kamili A, Berge K, Griinari M, Cohn JS (2009) Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice. J Agric Food Chem 57:9339–9345

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Deutsch L (2007) Evaluation of the effect of Neptune krill oil on chronic inflammation and arthritic symptoms. J Am Coll Nutr 26:39–48

    CAS  PubMed  Google Scholar 

  67. 67.

    Sampalis F, Bunea R, Pelland MF, Kowalski O, Duguet N, Dupuis S (2003) Evaluation of the effects of Neptune krill oil on the management of premenstrual syndrome and dysmenorrhea. Altern Med Rev 8:171–179

    PubMed  Google Scholar 

  68. 68.

    Ierna M, Kerr A, Scales H, Berge K, Griinari M (2010) Supplementation of diet with krill oil protects against experimental rheumatoid arthritis. BMC Musculoskelet Disorders 11:136

    Article  CAS  Google Scholar 

  69. 69.

    Hayashi H, Tanaka Y, Hibino H, Umeda Y, Kawamitsu H, Fujimoto H, Amakawa T (1999) Beneficial effect of salmon roe phosphatidylcholine in chronic liver disease. Curr Med Res Opin 15:177–184

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Taylor LA, Pletschen L, Arends J, Unger C, Massing U (2010) Marine phospholipids—a promising new dietary approach to tumor-associated weight loss. Support Care Cancer 18:159–170

    PubMed  Article  Google Scholar 

  71. 71.

    Lasch J, Weissing V, Brandi M (2003) Preparation of liposomes. In: Torchilin VP, Weissing V (eds) Liposomes: a practical approach, 2nd edn. Oxford University Press, New York, pp 3–30

    Google Scholar 

  72. 72.

    Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Watwe RM, Bellare JR (1995) Manufacture of liposomes—a review. Curr Sci 68:715–724

    CAS  Google Scholar 

  74. 74.

    Kim HY, Baiau IC (1991) Novel liposome microencapsulation techniques for food applications. Trends Food Sci Tech 2:55–61

    CAS  Article  Google Scholar 

  75. 75.

    Fruhwirth GO, Loidl A, Hermetter A (2007) Oxidized phospholipids: from molecular properties to disease. BBA Mol Basis Dis 1772:718–736

    CAS  Google Scholar 

  76. 76.

    Domingues MRM, Reis A, Domingues P (2008) Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 156:1–12

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Subbanagounder G, Deng YJ, Borromeo C, Dooley AN, Beliner JA, Salomon RG (2002) Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vascul Pharmacol 38:201–209

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Leitinger N (2003) Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 14:421–430

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Leitinger N (2005) Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol Nutr Food Res 49:1063–1071

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Spickett CM, Dever G (2005) Studies of phospholipid oxidation by electrospray mass spectrometry: from analysis in cells to biological effects. Biofactors 24:17–31

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Spiteller G (2006) Peroxyl radicals: inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Bio Med 41:362–387

    CAS  Article  Google Scholar 

  82. 82.

    Bochkov VN (2007) Inflammatory profile of oxidized phospholipids. Thromb Haemost 97:348–354

    CAS  PubMed  Google Scholar 

  83. 83.

    Imal Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YHC, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JS, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder CJ, Penninger JM (2008) Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133:235–249

    Article  CAS  Google Scholar 

  84. 84.

    Subbanagounder G, Leitinger N, Shih PT, Faull KF, Berliner JA (1999) Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis—in vitro and in vivo inhibition by WEB 2086. Circ Res 85:311–318

    CAS  PubMed  Google Scholar 

  85. 85.

    Androulakis N, Durand H, Ninio E, Tsoukatos DC (2005) Molecular and mechanistic characterization of platelet-activating factor-like bioactivity produced upon LDL oxidation. J Lipid Res 46:1923–1932

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Gopfert MS, Siedler F, Siess W, Sellmayer A (2005) Structural identification of oxidized acyl-phosphatidylcholines that induce platelet activation. J Vasc Res 42:120–132

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    King MF, Boyd LC, Sheldon BW (1992) Effects of phospholipids on lipid oxidation of a salmon oil model system. J Am Oil Chem Soc 69:237–242

    CAS  Article  Google Scholar 

  88. 88.

    King MF, Boyd LC, Sheldon BW (1992) Antioxidant properties of individual phospholipids in a salmon oil model system. J Am Oil Chem Soc 69:545–551

    CAS  Article  Google Scholar 

  89. 89.

    Boyd LC, Nwosu VC, Young CL, MacMillian L (1998) Monitoring lipid oxidation and antioxidant effects of phospholipids by headspace gas chromatographic analyses of rancimat trapped volatiles. J Food Lipids 5:269–282

    CAS  Article  Google Scholar 

  90. 90.

    Miyashita K, Nara E, Ota T (1994) Comparative-study on the oxidative stability of phosphatidylcholines from salmon egg and soybean in an aqueous-solution. Biosci Biotechnol Biochem 58:1772–1775

    CAS  Article  Google Scholar 

  91. 91.

    Applegate KR, Glomset JA (1986) Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J Lipid Res 27:658–680

    CAS  PubMed  Google Scholar 

  92. 92.

    Applegate KR, Glomset JA (1991) Effect of acyl chain unsaturation on the conformation of model diacylglycerols—a computer modeling study. J Lipid Res 32:1635–1644

    CAS  PubMed  Google Scholar 

  93. 93.

    Applegate KR, Glomset JA (1991) Effect of acyl chain unsaturation on the packing of model diacylglycerols in simulated monolayers. J Lipid Res 32:1645–1655

    CAS  PubMed  Google Scholar 

  94. 94.

    Feng SS, Brockman HL, Macdonald RC (1994) On osmotic-type equations of state for liquid-expanded monolayers of lipids at the air–water-interface. Langmuir 10:3188–3194

    CAS  Article  Google Scholar 

  95. 95.

    Brockman HL, Applegate KR, Momsen MM, King WC, Glomset JA (2003) Packing and electrostatic behavior of sn-2-docosahexaenoyl and -arachidonoyl phosphoglycerides. Biophys J 85:2384–2396

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Albrand M, Pageaux JF, Lagarde M, Dolmazon R (1994) Conformational-analysis of isolated docosahexaenoic acid (22/6 N-3) and its 14-(S) and 11-(S) hydroxy derivatives by force-field calculations. Chem Phys Lipids 72:7–17

    CAS  Article  Google Scholar 

  97. 97.

    Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Eldho NV, Feller SE, Tristram-Nagle S, Polozov IV, Gawrisch K (2003) Polyunsaturated docosahexaenoic vs docosapentaenoic acid—differences in lipid matrix properties from the loss of one double bond. J Am Chem Soc 125:6409–6421

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Saiz L, Klein ML (2001) Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys J 81:204–216

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Huber T, Rajamoorthi K, Kurze VF, Beyer K, Brown MF (2002) Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by H-2 NMR and molecular dynamics simulations. J Am Chem Soc 124:298–309

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Everts S, Davis JH (2000) H−1 and C−13 NMR of multilamellar dispersions of polyunsaturated (22:6) phospholipids. Biophys J 79:885–897

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Gawrisch K, Eldho NV, Holte LL (2003) The structure of DHA in phospholipid membranes. Lipids 38:445–452

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Bandarra NM, Campos RM, Batista I, Nunes ML, Empis JM (1999) Antioxidant synergy of alpha-tocopherol and phospholipids. J Am Oil Chem Soc 76:905–913

    CAS  Article  Google Scholar 

  105. 105.

    Ohshima T, Fujita Y, Koizumi C (1993) Oxidative stability of sardine and mackerel lipids with reference to synergism between phospholipids and alpha-tocopherol. J Am Oil Chem Soc 70:269–276

    CAS  Article  Google Scholar 

  106. 106.

    Saito H, Ishihara K (1997) Antioxidant activity and active sites of phospholipids as antioxidants. J Am Oil Chem Soc 74:1531–1536

    CAS  Article  Google Scholar 

  107. 107.

    Kashima M, Cha GS, Isoda Y, Hirano J, Miyazawa T (1991) The antioxidant effects of phospholipids on perilla oil. J Am Oil Chem Soc 68:119–122

    CAS  Article  Google Scholar 

  108. 108.

    Hildebrand DH, Terao J, Kito M (1984) Phospholipids plus tocopherols increase soybean oil stability. J Am Oil Chem Soc 61:552–555

    CAS  Article  Google Scholar 

  109. 109.

    Weng XC, Gordon MH (1993) Antioxidant synergy between phosphatidyl ethanolamine and alpha-tocopherylquinone. Food Chem 48:165–168

    CAS  Article  Google Scholar 

  110. 110.

    Mei LY, Decker EA, McClements DJ (1998) Evidence of iron association with emulsion droplets and its impact on lipid oxidation. J Agric Food Chem 46:5072–5077

    CAS  Article  Google Scholar 

  111. 111.

    Kuzuya M, Yamada K, Hayashi T, Funaki C, Naito M, Asai K, Kuzuya F (1991) Oxidation of low-density-lipoprotein by copper and iron in phosphate buffer. Biochim Biophys Acta 1084:198–201

    CAS  PubMed  Google Scholar 

  112. 112.

    Djuric Z, Potter DW, Taffe BG, Strasburg GM (2001) Comparison of iron-catalyzed DNA and lipid oxidation. J Biochem Mol Toxicol 15:114–119

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51:8073–8079

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Laridi R, Kheadr EE, Benech RO, Vuillemard JC, Lacroix C, Fliss I (2003) Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J 13:325–336

    CAS  Article  Google Scholar 

  115. 115.

    Sulkowski WW, Pentak D, Nowak K, Sulkowska A (2005) The influence of temperature, cholesterol content and pH on liposome stability. J Mol Struct 744:737–747

    Article  CAS  Google Scholar 

  116. 116.

    Finean JB (1990) Interaction between cholesterol and phospholipid in hydrated bilayers. Chem Phys Lipids 54:147–156

    CAS  Article  Google Scholar 

  117. 117.

    Fiorentini D, Landi L, Barzanti V, Cabrini L (1989) Buffers can modulate the effect of sonication on egg lecithin liposomes. Free Radic Res Commun 6:243–250

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186:591–598

    CAS  PubMed  Google Scholar 

  119. 119.

    Senior J, Gregoriadis G (1982) Stability of small unilamellar liposomes in serum and clearance from the circulation—the effect of the phospholipid and cholesterol components. Life Sci 30:2123–2136

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Papahadj D, Jacobson K, Nir S, Isac T (1973) Phase-transitions in phospholipid vesicles—fluorescence polarization and permeability measurements concerning effect of temperature and cholesterol. Biochim Biophys Acta 311:330–348

    Article  Google Scholar 

  121. 121.

    Brockerh H (1974) Model of interaction of polar lipids, cholesterol, and proteins in biological-membranes. Lipids 9:645–650

    Article  Google Scholar 

  122. 122.

    Huang CH (1977) Structural model for cholesterol–phosphatidylcholine complexes in bilayer membranes. Lipids 12:348–356

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Frankel EN (1993) In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends Food Sci Tech 4:220–225

    CAS  Article  Google Scholar 

  124. 124.

    Cillard J, Cillard P, Cormier M, Girre L (1980) Alpha-tocopherol prooxidant effect in aqueous-media—increased autoxidation rate of linoleic-acid. J Am Oil Chem Soc 57:252–255

    CAS  Article  Google Scholar 

  125. 125.

    Bazin BC, Cillard J, Koskas JP, Cillard P (1984) Arachidonic acid autooxidation in an aqueous media effect of α-tocopherol, cystein and nucleic acids. J Am Oil Chem Soc 61:1212–1215

    CAS  Article  Google Scholar 

  126. 126.

    MacMillan DK, Murphy RC (1995) Analysis of lipid hydroperoxides and long-chain conjugated keto acids by negative ion electrospray mass spectrometry. J Am Soc Mass Spectrom 6:1190–1201

    CAS  Article  Google Scholar 

  127. 127.

    Spickett CM, Pitt AR, Brown AJ (1998) Direct observation of lipid hydroperoxides in phospholipid vesicles by electrospray mass spectrometry. Free Radical Biol Med 25:613–620

    CAS  Article  Google Scholar 

  128. 128.

    Spickett CM, Rennie N, Winter H, Zambonin L, Landi L, Jerlich A, Schaur RJ, Pitt AR (2001) Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electroscopy MS. Biochem J 355:449–457

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Yin HY, Cox BE, Liu W, Porter NA, Morrow JD, Milne GL (2009) Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray ion trap mass spectrometry. J Mass Spectrom 44:672–680

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci 45:587–605

    CAS  Article  Google Scholar 

  131. 131.

    Thompson AK, Hindmarsh JP, Haisman D, Rades T, Singh H (2006) Comparison of the structure and properties of liposomes prepared from milk fat globule membrane and soy phospholipids. J Agric Food Chem 54:3704–3711

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Thompson AK, Haisman D, Singh H (2006) Physical stability of liposomes prepared from milk fat globule membrane and soya phospholipids. J Agric Food Chem 54:6390–6397

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Thompson AK, Mozafari MR, Singh H (2007) The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 87:349–360

    CAS  Article  Google Scholar 

  134. 134.

    Cansell M, Nacka F, Combe N (2003) Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids 38:551–559

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Cansell M, Moussaoui N, Petit AP, Denizot A, Combe N (2006) Feeding rats with liposomes or fish oil differently affects their lipid metabolism. Eur J Lipid Sci Technol 108:459–467

    CAS  Article  Google Scholar 

  136. 136.

    Hossain Z, Kurihara H, Hosokawa M, Takahashi K (2006) Docosahexaenoic acid and eicosapentaenoic acid-enriched phosphatidylcholine liposomes enhance the permeability, transportation and uptake of phospholipids in Caco-2 cells. Mol Cell Biochem 285:155–163

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Kirby CJ, Whittle CJ, Rigby N, Coxon DT, Law BA (1991) Stabilization of ascorbic-acid by microencapsulation in liposomes. Int J Food Sci Tech 26:437–449

    CAS  Article  Google Scholar 

  138. 138.

    Chang HM, Lee YC, Chen CC, Tu YY (2002) Microencapsulation protects immunoglobulin in yolk (IgY) specific against Helicobacter pylori urease. J Food Sci 67:15–20

    CAS  Article  Google Scholar 

  139. 139.

    Rao DR, Chawan CB, Veeramachaneni R (1995) Liposomal encapsulation of beta-galactosidase—comparison of 2 methods of encapsulation and in vitro lactose digestibility. J Food Biochem 18:239–251

    CAS  Article  Google Scholar 

  140. 140.

    Hsieh YF, Chen TL, Wang YT, Chang JH, Chang HM (2002) Properties of liposomes prepared with various lipids. J Food Sci 67:2808–2813

    CAS  Article  Google Scholar 

  141. 141.

    Lee SC, Yuk HG, Lee DH, Lee KE, Hwang YI, Ludescher RD (2002) Stabilization of retinol through incorporation into liposomes. J Biochem Mol Biol 35:358–363

    CAS  PubMed  Google Scholar 

  142. 142.

    Lee SK, Han JH, Decker EA (2002) Antioxidant activity of phosvitin in phosphatidylcholine liposomes and meat model systems. J Food Sci 67:37–41

    CAS  Article  Google Scholar 

  143. 143.

    Lee SC, Lee KE, Kim JJ, Lim SH (2005) The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol. J Liposome Res 15:157–166

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Thapon JL, Brule G (1986) Effects of pH and ionic-strength on lysozyme-caseins affinity. Lait 66:19–30

    CAS  Article  Google Scholar 

  145. 145.

    Arnaud JP (1998) Liposome-based functional drinks. Agro Food Ind Hi Tech 9:37–40

    CAS  Google Scholar 

  146. 146.

    Alkhalaf W, Piard JC, Elsoda M, Gripon JC, Desmazeaud M, Vassal L (1988) Liposomes as proteinase carriers for the accelerated ripening of Saint-Paulin type cheese. J Food Sci 53:1674–1679

    CAS  Article  Google Scholar 

  147. 147.

    Kirby CJ, Brooker BE, Law BA (1987) Accelerated ripening of cheese using liposome-encapsulated enzyme. Int J Food Sci Tech 22:355–375

    CAS  Article  Google Scholar 

  148. 148.

    Picon A, Gaya P, Medina M, Nunez M (1994) The effect of liposome encapsulation of chymosin derived by fermentation on Manchego cheese ripening. J Dairy Sci 77:16–23

    CAS  Article  Google Scholar 

  149. 149.

    Picon A, Gaya P, Medina M, Nunez M (1997) Proteinases encapsulated in stimulated release liposomes for cheese ripening. Biotechnol Lett 19:345–348

    CAS  Article  Google Scholar 

  150. 150.

    Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I (2002) Inhibition of Listeria innocua in Cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 68:3683–3690

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Kheadr EE, Vuillemard JC, El Deeb SA (2000) Accelerated Cheddar cheese ripening with encapsulated proteinases. Int J Food Sci Tech 35:483–495

    CAS  Article  Google Scholar 

  152. 152.

    Matsuzaki M, Mccafferty F, Karel M (1989) The effect of cholesterol content of phospholipid-vesicles on the encapsulation and acid resistance of beta-galactosidase from Escherichia coli. Int J Food Sci Technol 24:451–460

    CAS  Google Scholar 

  153. 153.

    Banville C, Vuillemard JC, Lacroix C (2000) Comparison of different methods for fortifying Cheddar cheese with vitamin D. Int Dairy J 10:375–382

    CAS  Article  Google Scholar 

  154. 154.

    Navarro JC, Bell MV, Amat F, Sargent JR (1992) The fatty-acid composition of phospholipids from brine shrimp, Artemia sp., eyes. Comp Biochem Physiol B 103:89–91

    Article  Google Scholar 

  155. 155.

    Bell MV, Batty RS, Dick JR, Fretwell K, Navarro JC, Sargent JR (1995) Dietary deficiency of docosahexaenoic acid impairs vision at low-light intensities in Juvenile herring (Clupea harengus L.). Lipids 30:443–449

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Sargent JR, Mcevoy LA, Bell JG (1997) Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155:117–127

    CAS  Article  Google Scholar 

  157. 157.

    Navarro JC, Amat F, Sargent JR (1992) Lipid-composition of cysts of the brine shrimp Artemia sp. from Spanish populations. J Exp Mar Biol Ecol 155:123–131

    CAS  Article  Google Scholar 

  158. 158.

    Southgate PC, Lou DC (1995) Improving the eta-3 Hufa composition of Artemia using microcapsules containing marine oils. Aquaculture 134:91–99

    CAS  Article  Google Scholar 

  159. 159.

    Narciso L, Pousao-Ferreira P, Passos A, Luis O (1999) HUFA content and DHA/EPA improvements of Artemia sp. with commercial oils during different enrichment periods. Aquac Res 30:21–24

    Article  Google Scholar 

  160. 160.

    Salhi M, Hernandez-Cruz CM, Bessonart M, Izquierdo MS, Fernandez-Palacios H (1999) Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae. Aquaculture 179:253–263

    CAS  Article  Google Scholar 

  161. 161.

    Izquierdo MS, Tandler A, Salhi M, Kolkovski S (2001) Influence of dietary polar lipids’ quantity and quality on ingestion and assimilation of labelled fatty acids by larval gilthead seabream. Aquacult Nutr 7:153–160

    CAS  Article  Google Scholar 

  162. 162.

    Cahu CL, Infante JLZ, Barbosa V (2003) Effect of dietary phospholipid level and phospholipid: neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet. Br J Nutr 90:21–28

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Koven W, Barr Y, Hadas E, Ben-Atia I, Chen Y, Weiss R, Tandler A (1999) The potential of liposomes as a nutrient supplement in first-feeding marine fish larvae. Aquacult Nutr 5:251–256

    CAS  Article  Google Scholar 

  164. 164.

    Kanazawa A, Teshima SI, Sakamoto M (1985) Effects of dietary lipids, fatty-acids, and phospholipids on growth and survival of prawn (Penaeus japonicus) larvae. Aquaculture 50:39–49

    CAS  Article  Google Scholar 

  165. 165.

    Mcevoy LA, Navarro JC, Amat F, Sargent JR (1997) Application of soya phosphatidylcholine in tuna orbital oil enrichment emulsions for Artemia. Aquacult Int 5:517–526

    Article  Google Scholar 

  166. 166.

    Kanazawa A, Teshima S, Sakamoto M (1985) Effects of dietary bonito-egg phospholipids and some phospholipids on growth and survival of the larval ayu, Plecoglossus altivelis. Z Angew Ichthyol 4:156–170

    Google Scholar 

  167. 167.

    Touraki M, Rigas P, Kastritsis C (1995) Liposome mediated delivery of water soluble antibiotics to the larvae of aquatic animals. Aquaculture 136:1–10

    CAS  Article  Google Scholar 

  168. 168.

    Tonheim SK, Koven W, Ronnestad I (2000) Enrichment of Artemia with free methionine. Aquaculture 190:223–235

    CAS  Article  Google Scholar 

  169. 169.

    Ozkizilcik S, Chu FLE (1994) Uptake and metabolism of liposomes by Artemia nauplii. Aquaculture 128:131–141

    CAS  Article  Google Scholar 

  170. 170.

    Hontoria F, Crowe JH, Crowe LM, Amat F (1994) Potential use of liposomes in larviculture as a delivery system through Artemia nauplii. Aquaculture 127:255–264

    Article  Google Scholar 

Download references


The authors wish to acknowledge the financial support from the European Regional Development Fund, Væksforum Hovedstaden through Øresund Food's 'Healthy Growth' project and also Technical University of Denmark.

Author information



Corresponding author

Correspondence to C. Jacobsen.

About this article

Cite this article

Henna Lu, F.S., Nielsen, N.S., Timm-Heinrich, M. et al. Oxidative Stability of Marine Phospholipids in the Liposomal Form and Their Applications. Lipids 46, 3–23 (2011).

Download citation


  • Marine phospholipids
  • Antioxidants
  • n-3 PUFA
  • Eicosapentaenoic acid
  • Docosahexaenoic acid
  • Oxidative stability
  • sn-2 Position
  • Liposome
  • Food industry
  • Aquaculture industry