Skip to main content
Log in

Enhanced Aortic Macrophage Lipid Accumulation and Inflammatory Response in LDL Receptor Null Mice Fed an Atherogenic Diet

  • Original Article
  • Published:
Lipids

Abstract

The effect of an atherogenic diet on inflammatory response and elicited peritoneal macrophage (Mϕ) cholesterol accumulation in relation to aortic lesion formation was assessed in LDL receptor null (LDLr−/−) mice. Mice were fed an atherogenic or control diet for 32 weeks. The atherogenic relative to control diet resulted in significantly higher plasma monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) concentrations, more aortic wall Mϕ deposition, higher serum non HDL-cholesterol concentrations and total cholesterol to HDL-cholesterol ratios, and greater accumulation of both aortic free and esterified cholesterol. Elicited peritoneal Mϕ selectively accumulated longer chain unsaturated fatty acids in their membrane, independent of the dietary fatty acid profile. Elicited peritoneal Mϕ isolated from mice fed the atherogenic relative to control diet had significantly less arachidonic acid levels, accumulated significantly higher esterified cholesterol, had significantly higher mRNA levels and secretion of MCP-1, and mRNA and protein levels of ATP-binding cassette A1. Diet treatment had no significant effect in elicited peritoneal Mϕ on TNFα and IL-6 mRNA levels and secretion. These data suggest that the atherogenic relative to control diet resulted in higher plasma inflammatory factor concentrations, less favorable lipoprotein profile, higher elicited peritoneal Mϕ cholesterol accumulation and inflammatory factor secretion, and more aortic wall Mϕ deposition, which in turn were associated with greater aortic cholesterol accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Mϕ:

Macrophage

LDLr−/−:

LDL receptor null

MCP-1:

Monocyte chemoattractant protein-1

TNFα:

Tumor necrosis factor alpha

IL-6:

Interleukin-6

MSR1:

Membrane bound Mϕ scavenger receptor 1

CD36:

Cluster of differentiation 36

ABCA1:

ATP-binding cassette A1

SR-B1:

Scavenger receptor B class 1

CCR2:

CC chemokine receptor 2

PBS:

Phosphate-buffered saline

TC:

Total cholesterol

FC:

Free cholesterol

EC:

Esterified cholesterol

BCA:

Bicinchoninic acid

HDL-C:

High density lipoprotein-cholesterol

non HDL-C:

Non-high density lipoprotein-cholesterol

LPS:

Lipopolysaccharide

SD:

Standard deviation

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

ALA:

Alpha-linolenic acid

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

LNA:

Linoleic acid

ARA:

Arachidonic acid

CVD:

Cardiovascular disease

TLR4:

Toll-like receptor 4

NF-kB:

Nuclear factor-kappa B

ox-LDL:

Oxidized LDL

LXR:

Liver-X-receptors

References

  1. Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109:II2–II10

    PubMed  Google Scholar 

  2. Lam MC, Tan KC, Lam KS (2004) Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages. Atherosclerosis 177:313–320

    Article  CAS  PubMed  Google Scholar 

  3. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711

    Article  CAS  PubMed  Google Scholar 

  4. Baranova I, Vishnyakova T, Bocharov A, Chen Z, Remaley AT, Stonik J, Eggerman TL, Patterson AP (2002) Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect Immun 70:2995–3003

    Article  CAS  PubMed  Google Scholar 

  5. Vita JA, Keaney JF Jr, Larson MG, Keyes MJ, Massaro JM, Lipinska I, Lehman BT, Fan S, Osypiuk E, Wilson PW, Vasan RS, Mitchell GF, Benjamin EJ (2004) Brachial artery vasodilator function and systemic inflammation in the Framingham Offspring Study. Circulation 110:3604–3609

    Article  CAS  PubMed  Google Scholar 

  6. Fiotti N, Giansante C, Ponte E, Delbello C, Calabrese S, Zacchi T, Dobrina A, Guarnieri G (1999) Atherosclerosis and inflammation. Patterns of cytokine regulation in patients with peripheral arterial disease. Atherosclerosis 145:51–60

    Article  CAS  PubMed  Google Scholar 

  7. Haddy N, Sass C, Droesch S, Zaiou M, Siest G, Ponthieux A, Lambert D, Visvikis S (2003) IL-6, TNF-alpha and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis 170:277–283

    Article  CAS  PubMed  Google Scholar 

  8. Seierstad SL, Seljeflot I, Johansen O, Hansen R, Haugen M, Rosenlund G, Froyland L, Arnesen H (2005) Dietary intake of differently fed salmon; the influence on markers of human atherosclerosis. Eur J Clin Invest 35:52–59

    Article  CAS  PubMed  Google Scholar 

  9. Meydani M (2000) Omega-3 fatty acids alter soluble markers of endothelial function in coronary heart disease patients. Nutr Rev 58:56–59

    Article  CAS  PubMed  Google Scholar 

  10. Basu A, Devaraj S, Jialal I (2006) Dietary factors that promote or retard inflammation. Arterioscler Thromb Vasc Biol 26:995–1001

    Article  CAS  PubMed  Google Scholar 

  11. Wu D, Marko M, Claycombe K, Paulson KE, Meydani SN (2003) Ceramide-induced and age-associated increase in macrophage COX-2 expression is mediated through up-regulation of NF-kappa B activity. J Biol Chem 278:10983–10992

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Wu D, Matthan NR, Lamon-Fava S, Lecker JL, Lichtenstein AH (2009) Reduction in dietary omega-6 polyunsaturated fatty acids: eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 204:147–155

    Article  CAS  PubMed  Google Scholar 

  13. Rudel LL, Kelley K, Sawyer JK, Shah R, Wilson MD (1998) Dietary monounsaturated fatty acids promote aortic atherosclerosis in LDL receptor-null, human ApoB100-overexpressing transgenic mice. Arterioscler Thromb Vasc Biol 18:1818–1827

    CAS  PubMed  Google Scholar 

  14. Matthan NR, Giovanni A, Schaefer EJ, Brown BG, Lichtenstein AH (2003) Impact of simvastatin, niacin, and/or antioxidants on cholesterol metabolism in CAD patients with low HDL. J Lipid Res 44:800–806

    Article  CAS  PubMed  Google Scholar 

  15. Dorfman SE, Wang S, Vega-Lopez S, Jauhiainen M, Lichtenstein AH (2005) Dietary fatty acids and cholesterol differentially modulate HDL cholesterol metabolism in Golden-Syrian hamsters. J Nutr 135:492–498

    CAS  PubMed  Google Scholar 

  16. Lichtenstein AH, Matthan NR, Jalbert SM, Resteghini NA, Schaefer EJ, Ausman LM (2006) Novel soybean oils with different fatty acid profiles alter cardiovascular disease risk factors in moderately hyperlipidemic subjects. Am J Clin Nutr 84:497–504

    CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  18. Millen BE, Quatromoni PA, Nam BH, O’Horo CE, Polak JF, D’Agostino RB (2002) Dietary patterns and the odds of carotid atherosclerosis in women: the Framingham Nutrition Studies. Prev Med 35:540–547

    Article  PubMed  Google Scholar 

  19. Klor HU, Hauenschild A, Holbach I, Schnell-Kretschmer H, Stroh S (1997) Nutrition and cardiovascular disease. Eur J Med Res 2:243–257

    CAS  PubMed  Google Scholar 

  20. Paoletti R, Gotto AM Jr, Hajjar DP (2004) Inflammation in atherosclerosis and implications for therapy. Circulation 109:III20–III26

    Article  PubMed  Google Scholar 

  21. Brueckmann M, Bertsch T, Lang S, Sueselbeck T, Wolpert C, Kaden JJ, Jaramillo C, Huhle G, Borggrefe M, Haase KK (2004) Time course of systemic markers of inflammation in patients presenting with acute coronary syndromes. Clin Chem Lab Med 42:1132–1139

    Article  CAS  PubMed  Google Scholar 

  22. Hoogeveen RC, Morrison A, Boerwinkle E, Miles JS, Rhodes CE, Sharrett AR, Ballantyne CM (2005) Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: atherosclerosis risk in communities study. Atherosclerosis 183:301–307

    Article  CAS  PubMed  Google Scholar 

  23. Pawlak K, Pawlak D, Mysliwiec M (2006) Inflammation but not oxidative stress is associated with beta-chemokine levels and prevalence of cardiovascular disease in uraemic patients. Cytokine 35:258–262

    Article  CAS  PubMed  Google Scholar 

  24. Baer DJ, Judd JT, Clevidence BA, Tracy RP (2004) Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr 79:969–973

    CAS  PubMed  Google Scholar 

  25. Lopez-Garcia E, Schulze MB, Fung TT, Meigs JB, Rifai N, Manson JE, Hu FB (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80:1029–1035

    CAS  PubMed  Google Scholar 

  26. Miles EA, Wallace FA, Calder PC (2000) Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages. Atherosclerosis 152:43–50

    Article  CAS  PubMed  Google Scholar 

  27. Ballantyne CM, Nambi V (2005) Markers of inflammation and their clinical significance. Atheroscler Suppl 6:21–29

    Article  CAS  PubMed  Google Scholar 

  28. Martinovic I, Abegunewardene N, Seul M, Vosseler M, Horstick G, Buerke M, Darius H, Lindemann S (2005) Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ J 69:1484–1489

    Article  CAS  PubMed  Google Scholar 

  29. Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95:858–866

    Article  CAS  PubMed  Google Scholar 

  30. Ishibashi M, Egashira K, Zhao Q, Hiasa K, Ohtani K, Ihara Y, Charo IF, Kura S, Tsuzuki T, Takeshita A, Sunagawa K (2004) Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24:e174–e178

    Article  CAS  PubMed  Google Scholar 

  31. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281

    Article  CAS  PubMed  Google Scholar 

  32. Tian J, Pei H, Sanders JM, Angle JF, Sarembock IJ, Matsumoto AH, Helm GA, Shi W (2006) Hyperlipidemia is a major determinant of neointimal formation in LDL receptor-deficient mice. Biochem Biophys Res Commun 345:1004–1009

    Article  CAS  PubMed  Google Scholar 

  33. Chen A, Mumick S, Zhang C, Lamb J, Dai H, Weingarth D, Mudgett J, Chen H, MacNeil DJ, Reitman ML, Qian S (2005) Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 13:1311–1320

    Article  CAS  PubMed  Google Scholar 

  34. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505

    Article  CAS  PubMed  Google Scholar 

  35. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  CAS  PubMed  Google Scholar 

  36. Glass CK, Witztum JL (2001) Atherosclerosis the road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  37. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  Google Scholar 

  38. Tous M, Ferre N, Rull A, Marsillach J, Coll B, Alonso-Villaverde C, Camps J, Joven J (2006) Dietary cholesterol and differential monocyte chemoattractant protein-1 gene expression in aorta and liver of apo E-deficient mice. Biochem Biophys Res Commun 340:1078–1084

    Article  CAS  PubMed  Google Scholar 

  39. Vink A, Schoneveld AH, van der Meer JJ, van Middelaar BJ, Sluijter JP, Smeets MB, Quax PH, Lim SK, Borst C, Pasterkamp G, de Kleijn DP (2002) In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 106:1985–1990

    Article  CAS  PubMed  Google Scholar 

  40. Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J, Kaul S, Arditi M (2001) Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104:3103–3108

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Wu D, Lamon-Fava S, Matthan NR, Honda KL, Lichtenstein AH (2009) In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. Br J Nutr 102:497–501

    Article  CAS  PubMed  Google Scholar 

  42. Scher JU, Pillinger MH (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 114:100–109

    Article  CAS  PubMed  Google Scholar 

  43. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    Article  CAS  PubMed  Google Scholar 

  44. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  CAS  PubMed  Google Scholar 

  45. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, Rose DW, Willson TM, Rosenfeld MG, Glass CK (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763

    Article  CAS  PubMed  Google Scholar 

  46. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW (2002) Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–49988

    Article  CAS  PubMed  Google Scholar 

  47. Ludewig B, Laman JD (2004) The in and out of monocytes in atherosclerotic plaques: Balancing inflammation through migration. Proc Natl Acad Sci USA 101:11529–11530

    Article  CAS  PubMed  Google Scholar 

  48. Hayek MG, Mura C, Wu D, Beharka AA, Han SN, Paulson KE, Hwang D, Meydani SN (1997) Enhanced expression of inducible cyclooxygenase with age in murine macrophages. J Immunol 159:2445–2451

    CAS  PubMed  Google Scholar 

  49. Wu D, Mura C, Beharka AA, Han SN, Paulson KE, Hwang D, Meydani SN (1998) Age-associated increase in PGE2 synthesis and COX activity in murine macrophages is reversed by vitamin E. Am J Physiol 275:C661–668

    CAS  PubMed  Google Scholar 

  50. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, Kaminski WE, Schmitz G (1999) Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 257:29–33

    Article  CAS  PubMed  Google Scholar 

  51. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, Seilhamer JJ, Vaughan AM, Oram JF (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 104:R25–31

    Article  CAS  PubMed  Google Scholar 

  52. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 98:507–512

    Article  CAS  PubMed  Google Scholar 

  53. Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG (2001) 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 276:38378–38387

    Article  CAS  PubMed  Google Scholar 

  54. Beyea MM, Heslop CL, Sawyez CG, Edwards JY, Markle JG, Hegele RA, Huff MW (2007) Selective up-regulation of LXR-regulated genes ABCA1, ABCG1, and APOE in macrophages through increased endogenous synthesis of 24(S), 25-epoxycholesterol. J Biol Chem 282:5207–5216

    Article  CAS  PubMed  Google Scholar 

  55. Uehara Y, Miura S, von Eckardstein A, Abe S, Fujii A, Matsuo Y, Rust S, Lorkowski S, Assmann G, Yamada T, Saku K (2007) Unsaturated fatty acids suppress the expression of the ATP-binding cassette transporter G1 (ABCG1) and ABCA1 genes via an LXR/RXR responsive element. Atherosclerosis 191:11–21

    Article  CAS  PubMed  Google Scholar 

  56. Murthy S, Born E, Mathur SN, Field FJ (2004) Liver-X-receptor-mediated increase in ATP-binding cassette transporter A1 expression is attenuated by fatty acids in CaCo-2 cells: effect on cholesterol efflux to high-density lipoprotein. Biochem J 377:545–552

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical expertise provided by Susan Jalbert, and Drs. Donald Smith and Mohsen Meydani, and for the thoughtful manuscript review by Drs. Julian Marsh and Alice Dillard. This project was supported by T32 HL69772-01A1 (S.W., J.L.), RO1 HL 54727 and USDA agreement 588-1950-9-001. Any opinions, findings, conclusions or recommendations expressed in this publication are those of authors, and do not necessarily reflect the view of USDA.

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice H. Lichtenstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Supplementary material 2 (DOC 45 kb)

About this article

Cite this article

Wang, S., Wu, D., Matthan, N.R. et al. Enhanced Aortic Macrophage Lipid Accumulation and Inflammatory Response in LDL Receptor Null Mice Fed an Atherogenic Diet. Lipids 45, 701–711 (2010). https://doi.org/10.1007/s11745-010-3454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3454-8

Keywords

Navigation