Skip to main content
Log in

Lipidomic Analysis of Porcine Olfactory Epithelial Membranes and Cilia

  • Original Article
  • Published:
Lipids

Abstract

The use of the matrix 9-aminoacridine has been recently introduced in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of both anionic and cationic phospholipids. In the present study, we take advantage of this technique to analyze the lipids of porcine olfactory mucosa and a membrane fraction enriched in cilia. Thin-layer chromatography (TLC) and 31P-NMR analyses of the lipid extracts were also performed in parallel. MALDI-TOF-MS allowed the identification of lipid classes in the total lipid extract and individual lipids present in the main TLC bands. The comparison between the composition of the two lipid extracts showed that: (1) cardiolipin, present in small amount in the whole olfactory mucosa lipid extract, was absent in the extract of membranes enriched in olfactory cilia, (2) phosphatidylethanolamine species were less abundant in ciliary than in whole epithelial membranes, (3) sulfoglycosphingolipids were detected in the lipid extract of ciliary membranes, but not in that of epithelial membranes. Our results indicate that the lipid pattern of ciliary membranes is different from that of whole-tissue membranes and suggest that olfactory receptors require a specific lipid environment for their functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC3:

Adenylcyclase III

cAMP:

Cyclic-adenosine-monophosphate

Cer:

Ceramides

CHOL:

Cholesterol

CM:

Ciliary membranes

DMSO:

Dimethylsulfoxide

DTT:

Dithiothreitol

Gb5:

Globopentaosylceramides

IBMX:

Isobutylmethylxanthine

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

OR:

Olfactory receptor

OSN:

Olfactory sensory neuron

PtdOH:

Phosphatidic acid

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

p-PtdEtn:

Plasmenyl-Phosphatidylethanolamine

PtdIns:

Phosphatidylinositol

PMSF:

Phenylmethanesulfonyl fluoride

PtdSer:

Phosphatidylserine

Ptd2Gro:

Cardiolipin

S-GalCer:

Sulfoglycosphingolipids

CerPCho:

Sphingomyelin

WM:

Whole-tissue membranes

References

  1. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–217

    Article  CAS  PubMed  Google Scholar 

  2. Munger SD, Leinders-Zufall T, Zufall Z (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  CAS  PubMed  Google Scholar 

  3. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  4. Schreiber S, Fleischer J, Breer H, Boekhoff I (2000) A possible role for caveolin as a signaling organizer in olfactory sensory membranes. J Biol Chem 275:24115–24123

    Article  CAS  PubMed  Google Scholar 

  5. Brady JD, Rich TC, Le X, Stafford K, Fowler CJ, Lynch L, Karpen JW, Brown LR, Martens JR (2004) Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol Pharmacol 65:503–511

    Article  CAS  PubMed  Google Scholar 

  6. Koyama N, Sawada K, Kurihra K (1971) Isolation and some properties of plasma membranes from bovine olfactory epithelium. Biochim Biophys Acta 241:42–48

    Article  CAS  Google Scholar 

  7. Russel Y, Evans P, Dodd GH (1989) Characterization of the total lipid and fatty acid composition of rat olfactory mucosa. J Lipid Res 30:877–883

    Google Scholar 

  8. Anholt RR, Aebi U, Snyder H (1986) A partially purified preparation of isolated chemosensory cilia from the olfactory epithelium of the Bullfrog, Rana catesbeiana. J Neurosci 6:1962–1969

    CAS  PubMed  Google Scholar 

  9. Chen Z, Pace U, Heldman J, Shapira A, Lancet D (1986) Isolated frog olfactory cilia: a preparation of dendritic membranes from chemosensory neurons. J Neurosci 6:2146–2154

    CAS  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Schandar M, Laugwitz K, Boekhoff I, Kroner C, Gudermann T, Schultz G, Breer H (1998) Odorants selectively activate distinct G protein subtypes in olfactory cilia. J Biol Chem 273:16669–16677

    Article  CAS  PubMed  Google Scholar 

  12. Boekhoff I, Tareilus E, Strotmann J, Breer H (1990) Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J 9:2453–2458

    CAS  PubMed  Google Scholar 

  13. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  14. Kates M (1986) Techniques of lipidology laboratory techniques in biochemistry and molecular biology, vol 3. Elsevier, Amsterdam

    Google Scholar 

  15. Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW (2008) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem 80:7576–7585

    Article  CAS  PubMed  Google Scholar 

  16. Meneses P, Glonek T (1988) High resolution 31P NMR of extracted phospholipids. J Lipid Res 29:679–689

    CAS  PubMed  Google Scholar 

  17. Corcelli A, Lattanzio VMT, Mascolo G, Papadia P, Fanizzi FP (2002) Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane. J Lipid Res 43:132–140

    CAS  PubMed  Google Scholar 

  18. Cheng H, Sun G, Yang K, Gross RW, Han X (2010) Selective desorption/ionization of sulphatides by MALDI-MS facilitated using 9-aminoacridine as matrix. J Lipid Res. doi:101194/jlrD004077

  19. Pearce JM, Komoroski RA, Mrak RE (2009) Phospholipid composition of postmortem schizophrenic brain by 31P NMR spectroscopy. Magn Reson Med 61:28–34

    Article  CAS  PubMed  Google Scholar 

  20. Jenkins PM, McEwen DP, Martens JR (2009) Olfactory cilia: linking sensory cilia function and human disease. Chem Senses 34:451–464

    Article  CAS  PubMed  Google Scholar 

  21. Corcelli A, Lobasso S, Lopalco P, Dibattista M, Araneda R, Peterlin Z, Firestein S (2010) Detection of explosives by olfactory sensory neurons. J Hazard Mater 175:1096–1100

    Article  CAS  PubMed  Google Scholar 

  22. Käkelä R, Somerharju P, Tyynelä J (2003) Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J Neurochem 84:1051–1065

    Article  PubMed  Google Scholar 

  23. Washburn KB, Turner TJ, Talamo BR (2002) Comparison of a mechanical agitation and calcium shock methods for preparation of a membrane fraction enriched in olfactory cilia. Chem Senses 27:635–642

    Article  CAS  PubMed  Google Scholar 

  24. Eckhardt M (2008) The role and metabolism of sulfatides in the nervous system. Mol Neurobiol 37:93–103

    Article  CAS  PubMed  Google Scholar 

  25. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  Google Scholar 

  26. Cuevas P, Gutierrez Diaz JA (1985) Absence of filipin-sterol complexes from the ciliary necklace of ependymal cells. Anat Embryol (Berl) 172:97–99

    Article  CAS  Google Scholar 

  27. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  CAS  PubMed  Google Scholar 

  28. Maritan M, Monaco G, Zamparo I, Zaccolo M, Pozzan T, Lodovichi C (2009) Odorant receptors at the growth cone are coupled to localized cAMP and Ca2+ increases. Proc Natl Acad Sci USA 106:3537–3542

    Article  CAS  PubMed  Google Scholar 

  29. Klimmeck D, Mayer U, Ungerer N, Warnken U, Schnölzer M, Frings S, Möhrlen F (2008) Calcium-signaling networks in olfactory receptor neurons. Neuroscience 151:901–912

    Article  CAS  PubMed  Google Scholar 

  30. Mayer U, Ungerer N, Klimmeck D, Warnken U, Schnölzer M, Frings S, Möhrlen F (2008) Proteomic analysis of a membrane preparation from rat olfactory sensory cilia. Chem Senses 33:145–162

    Article  CAS  PubMed  Google Scholar 

  31. Mayer U, Kuller A, Daiber FC, Neudorf I, Warnken U, Schnolzer M, Frings S, Mohrlen F (2009) The proteome of rat olfactory sensory cilia. Proteomics 9:322–334

    Article  CAS  PubMed  Google Scholar 

  32. Saavedra MV, Smalla KH, Thomas U, Sandoval S, Olavarria K, Castillo K, Delgado MG, Delgado R, Gundelfinger ED, Bacigalupo J, Wyneken U (2008) Scaffolding proteins in highly purified rat olfactory cilia membranes. Chem Senses 19:1123–1126

    CAS  Google Scholar 

Download references

Acknowledgments

We thank F. Naso of the University of Bari for the use of the MALDI-TOF instrument. This work was supported by the Italian Ministry of Defence (Contract n. 685/18.12.2003), by Regione Puglia (Grant code 15, Sens&MicroLab) and by Fondazione Cassa di Risparmio di Puglia, Bari, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Corcelli.

About this article

Cite this article

Lobasso, S., Lopalco, P., Angelini, R. et al. Lipidomic Analysis of Porcine Olfactory Epithelial Membranes and Cilia. Lipids 45, 593–602 (2010). https://doi.org/10.1007/s11745-010-3432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3432-1

Keywords

Navigation