Skip to main content
Log in

Enhanced Bioavailability of Eicosapentaenoic Acid from Fish Oil After Encapsulation Within Plant Spore Exines as Microcapsules

  • Communication
  • Published:
Lipids

Abstract

Benefits of eicosapentaenoic acid (EPA) can be enhanced by raising their bioavailability through microencapsulation. Pollen can be emptied to form hollow shells, known as exines, and then used to encapsulate material, such as oils in a dry powder form. Six healthy volunteers ingested 4.6 g of fish oil containing 20% EPA in the form of ethyl ester first alone and then as 1:1 microencapsulated powder of exines and fish oil. Serum bioavailability of EPA was measured by area under curve (AUC0–24). The mean AUC0–24 of EPA from ethyl ester with exine (M = 19.7, SD = 4.3) was significantly higher than ethyl ester without exines (M = 2, SD = 1.4, p < 0.01).The bioavailability of EPA is enhanced by encapsulation by pollen exines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Ar:

Argon laser

AUC(0–24) :

Area under the curve between time 0–24 h

BHT:

Butylated hydroxytoluene

C/M:

Chloroform methanol

EPA:

Eicosapentaeoic acid

FAME:

Fatty acid methyl esters

GLC:

Gas liquid chromatography

HeNe:

Helium neon

LCPUFA:

Long chain poly unsaturated fatty acids

M:

Mean

SD:

Standard Deviation

SEM:

Scanning electron microscopy

SPSS:

Statistical Package for the Social Sciences

References

  1. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369:1090–1098

    Article  CAS  PubMed  Google Scholar 

  2. Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM (2006) n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83:S1526–S1535

    Google Scholar 

  3. Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224

    Article  CAS  PubMed  Google Scholar 

  4. Kolanowski W, Laufenberg G, Kunz B (2004) Fish oil stabilisation by microencapsulation with modified cellulose. Int J Food Sci Nutr 55:333–343

    Article  CAS  PubMed  Google Scholar 

  5. Shaw G (1997) Sporopollenin in Phytochemical Phylogeny. Academic Press, London

    Google Scholar 

  6. Barrier S, Löbbert A, Boasman AJ, Boa AN, Lorch M, Atkin SL, Mackenzie G (2010) Access to a primary aminosporopollenin solid support from plant spores. Green Chem 12:234–240

    Article  CAS  Google Scholar 

  7. Barrier S, Rigby AS, Diego-Taboada A, Thomasson MJ, Mackenzie G, Atkin SL (2010) Sporopollenin exines: a novel natural taste masking material. LWT Food Sci Technol 43:73–76

    Article  CAS  Google Scholar 

  8. Lorch M, Thomasson MJ, Diego-Taboada A, Barrier S, Atkin SL, Mackenzie G, Archibald SJ (2009) MRI contrast agent delivery using spore capsules: controlled release in blood plasma. Chem Commun (Camb) 6442–6444

  9. Paunov VN, Mackenzie G, Stoyanov SD (2007) Sporopollenin micro-reactors for in situ preparation, encapsulation and targeted delivery of active components. Mater Chem 17:609–612

    Article  CAS  Google Scholar 

  10. Gordon Bell J, Miller D, MacDonald DJ, MacKinlay EE, Dick JR, Cheseldine S, Boyle RM, Graham C, O’Hare AE (2009) The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr 103:1160–1167

    Google Scholar 

  11. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  12. Christie W (2003) Lipid analysis. The Oily Press, Bridgewater

    Google Scholar 

  13. Tremoli E, Eligini S, Colli S, Maderna P, Rise P, Pazzucconi F, Marangoni F, Sirtori CR, Galli C (1994) n-3 Fatty acid ethyl ester administration to healthy subjects and to hypertriglyceridemic patients reduces tissue factor activity in adherent monocytes. Arterioscler Thromb 14:1600–1608

    CAS  PubMed  Google Scholar 

  14. Gowda D, Ravi V, Shivakumar H, Hatna S (2009) Preparation, evaluation and bioavailability studies of indomethacin-bees wax microspheres. J Mater Sci Mater Med 20:1447–1456

    Article  CAS  PubMed  Google Scholar 

  15. Tao Y, Lu Y, Sun Y, Gu B, Lu W, Pan J (2009) Development of mucoadhesive microspheres of acyclovir with enhanced bioavailability. Int J Pharm 378:30–36

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Wakil.

About this article

Cite this article

Wakil, A., Mackenzie, G., Diego-Taboada, A. et al. Enhanced Bioavailability of Eicosapentaenoic Acid from Fish Oil After Encapsulation Within Plant Spore Exines as Microcapsules. Lipids 45, 645–649 (2010). https://doi.org/10.1007/s11745-010-3427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3427-y

Keywords

Navigation