, Volume 45, Issue 5, pp 437–444 | Cite as

Occurrence of the cis-4,7,10, trans-13-22:4 Fatty Acid in the Family Pectinidae (Mollusca: Bivalvia)

  • Edouard KraffeEmail author
  • Jacques Grall
  • Elena Palacios
  • Citlali Guerra
  • Philippe Soudant
  • Yanic Marty
Original Article


The present study aimed to elucidate the effective phylogenetic specificity of distribution of a cis-4,7,10, trans-13-22:4 (22:4(n-9)Δ13trans) among pectinids. For this purpose, we extended the analysis of membrane glycerophospholipids FA composition to 13 species of scallops, covering 11 genera and 7 tribes representatives of the three subfamilies Chlamydinae, Palliolinae and Pectininae and the subgroup Aequipecten. In species belonging to the subfamily Pectininae and the Aequipecten subgroup, 22:4(n-9)Δ13trans was found in substantial amounts, but it was absent in other species belonging to the subfamilies Chlamydinae and Palliolinae. Homologous non-methylene-interrupted (NMI) FA, also hypothesized to differ along phylogenetic lines in bivalves, were totally absent or present only in trace amounts in representatives of the Aequipecten subgroup but ranged from 0.3 to 4.5% of the total FA in Pectinidae, Chlamydinae, and Palliolinae subfamilies. The species-specific occurrence of NMI and 22:4(n-9)Δ13trans FA in membrane lipids of pectinids agrees with the most recent phylogenies based on shell morphology and molecular characteristics. We examined the potential timing of the appearance of 22:4(n-9)Δ13trans in pectinids on a geologic time scale.


cis-4,7,10, trans-13-22:4 fatty acid Fatty acid composition Bivalve Scallops Pectinidae Phylogeny 



Non-methylene-interrupted fatty acids


Dienoic non-methylene-interrupted fatty acids


Trienoic non-methylene-interrupted fatty acids




Phosphatidylserine plasmalogen



We would like to thank A. Lorrain, A. Druinker, L. Chauvaud, and Y-M. Paulet for supply of some of the species we characterized. This work was supported by a grant from “Ministère de l’Education Nationale de la Recherche et de la Technologie” (M.E.N.R.T., France). We also would like to thank Prof. H. Guderley for her English revision and comments, and also anonymous reviewers for their helpful comments.


  1. 1.
    Marty Y, Soudant P, Perrotte S, Moal J, Dussauze J, Samain JF (1999) Identification and occurrence of a novel cis-4,7,10,trans-13-docosatetraenoic fatty acid in the scallop Pecten maximus (L.). J Chromatogr A 839:119–127CrossRefGoogle Scholar
  2. 2.
    Kraffe E, Soudant P, Marty Y (2006) cis-4,7,10,trans-13-22:4 Fatty acid distribution in phospholipids of pectinid species Aequipecten opercularis and Pecten maximus. Lipids 41:491–497CrossRefPubMedGoogle Scholar
  3. 3.
    Joseph JD (1982) Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Prog Lipid Res 21:10–153CrossRefGoogle Scholar
  4. 4.
    Napolitano GE, Ackman RG (1992) Anatomical distributions and temporal variations of lipid classes in sea scallops Placopecten magellanicus (Gmelin) from Georges bank (Nova Scotia). Comp Biochem Phys 103:645–650CrossRefGoogle Scholar
  5. 5.
    Paradis M, Ackman RG (1975) Occurrence and chemical structure of non-methylene-interrupted dienoic fatty acids in American oyster Crassostrea virginica. Lipids 10:12–16CrossRefPubMedGoogle Scholar
  6. 6.
    Zhukova NV (1986) Biosynthesis of non-methylene-interrupted fatty acids from [14C] acetate in molluscs. Biochim Biophys Acta 878:131–133Google Scholar
  7. 7.
    Zhukova NV, Svetashev VI (1986) Non-methylene-interrupted dienoic fatty acids in molluscs from the Sea of japan. Comp Biochem Phys 83B:643–646CrossRefGoogle Scholar
  8. 8.
    Zhukova NV (1991) The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Phys 100B:801–804CrossRefGoogle Scholar
  9. 9.
    Dunstan GA, Volkman JK, Barett SM (1993) The effect of lyophilization on the solvent extraction of lipid classes, fatty acids and sterols from the oyster Crassostrea gigas. Lipids 28:937–944CrossRefGoogle Scholar
  10. 10.
    Kraffe E, Soudant P, Marty Y (2004) Fatty acids of serine, ethanolamine and choline plasmalogens in some marine bivalves. Lipids 39:59–66CrossRefPubMedGoogle Scholar
  11. 11.
    Ackman RG, Hooper SN (1973) Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates: a comparison of two molluscs (Littorina littorea and Lunatia triserita) with the sand shrimp (Crangon septumspinosus). Comp Biochem Phys 46B:153–165CrossRefGoogle Scholar
  12. 12.
    Napolitano GE, Ackman RG (1993) Fatty acid dynamics in sea scallops Placopecten magellanicus (Gmelin, 1791) from Georges bank, Nova Scotia. J Shell Res 12:267–277Google Scholar
  13. 13.
    Napolitano GE, MacDonald BA, Thompson RJ, Ackman RG (1992) Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus) from different habitats. Mar Biol 113:71–76CrossRefGoogle Scholar
  14. 14.
    Kraffe E, Tremblay R, Belvin S, Le Coz JR, Marty Y, Guderley H (2008) Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar Biol 156:25–38CrossRefGoogle Scholar
  15. 15.
    Waller TR (2006) New phylogenies of the Pectinidae (Mollusca: Bivalvia): reconciling morphological and molecular approaches. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology and aquaculture. Elsevier, pp 1–44Google Scholar
  16. 16.
    Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  17. 17.
    Nelson GJ (1993) Isolation and purification of lipids from biological matrices. In: Perkins EG (ed) Analyses of fats, oils and derivatives. AOCS Press, Champaign, pp 20–89Google Scholar
  18. 18.
    Marty Y, Delaunay F, Moal J, Samain JF (1992) Changes in the fatty acid composition of the scallop Pecten maximus (L.) during larval development. J Exp Mar Biol Ecol 163:221–234CrossRefGoogle Scholar
  19. 19.
    Rabinovich AL, Ripatti PO (1991) The flexibility of natural hydrocarbon chains with non-methylene-interrupted double bonds. Chem Phys Lipids 58:185–192CrossRefGoogle Scholar
  20. 20.
    Soudant P, Marty Y, Moal J, Robert R, Quéré C, Le Coz JR, Samain JF (1996) Effect of food fatty acids and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143:361–378CrossRefGoogle Scholar
  21. 21.
    Pernet F, Tremblay R, Bourget E (2003) Biochemical indicator of sea scallop (Placopecten magellanicus) quality based on lipid class composition. Part I: Broodstock conditioning and young larvae performance. J Shell Res 22:365–376Google Scholar
  22. 22.
    Delaporte M, Soudant P, Moal J, Kraffe E, Marty Y, Samain JF (2005) Impact and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp Biochem Phys Part A 140:460–470CrossRefGoogle Scholar
  23. 23.
    Pirini M, Manuzzi MP, Pagliarani A, Trombetti F, Borgatti AR, Ventrella V (2007) Changes in fatty acid composition of Mytilus galloprovincialis (Lamarck) fed on microalgal and wheat germ diets. Comp Biochem Phys 147:616–626CrossRefGoogle Scholar
  24. 24.
    Soudant P, Marty Y, Moal J, Masski H, Samain JF (1998) Fatty acid composition of polar lipid classes during larval development of scallop Pecten maximus (L.). Comp Biochem Phys A 121:279–288Google Scholar
  25. 25.
    Ventrella V, Pirini M, Pagliarani A, Trombetti F, Pia Manuzzi M, Borgatti AR (2008) Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic sea. Comp Biochem Phys 149:241–250CrossRefGoogle Scholar
  26. 26.
    Soudant P, Van Ryckeghem K, Marty Y, Moal J, Samain JF, Sorgeloos P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas. Comp Biochem Phys 123:209–222CrossRefGoogle Scholar
  27. 27.
    Pernet F, Tremblay R, Comeau L, Guderley H (2007) Temperature adaptation in two bivalve species from different thermal habitats: energetic and remodeling of membrane lipids. J Exp Biol 210:2999–3014CrossRefPubMedGoogle Scholar
  28. 28.
    Palacios E, Racotta IS, Kraffe E, Marty Y, Moal J, Samain JF (2005) Lipid composition of the giant lion’s-paw scallop (Nodipecten subnodosus) in relation to gametogenesis I. Fatty acids. Aquaculture 250:270–282CrossRefGoogle Scholar
  29. 29.
    Matsumoto M, Hayami I (2000) Phylogenetic analysis of the family Pectinidae (Bivalvia) based on mitochondrial cytochrome c oxidase subunit I. J Mollus Stud 66:477–488CrossRefGoogle Scholar
  30. 30.
    Barucca M, Olmo E, Schiaparelli S, Canapa A (2004) Molecular phylogeny of the family Pectinidae (Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes. Mol Phylogenet Evol 31:89–95CrossRefPubMedGoogle Scholar
  31. 31.
    Saavedra C, Peña JB (2006) Phylogenetics of American scallops (Bivalvia: Pectinidae) based on partial 16S and 12S ribosomal RNA gene sequences. Mar Biol 150:111–119CrossRefGoogle Scholar
  32. 32.
    Puslednik L, Serb JM (2008) Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Mol Phylogenet Evol 48:1178–1188CrossRefPubMedGoogle Scholar
  33. 33.
    Waller TR (1991) Evolutionary relationship among commercial scallops (Mollusca: Bivalvia: Pectinidae). In: Shumway SE (ed) Scallops: biology, ecology and aquaculture. Elsevier, pp 1–73Google Scholar
  34. 34.
    Waller TR (1993) The evolution of “Chlamys” (Mollusca: Bivalvia: Pectinidae) in the tropical western Atlantic and eastern Pacific. Am Malacol Bull 10:195–249Google Scholar
  35. 35.
    Chelomin VP, Zhukova NV (1981) Lipid composition and some aspects of aminophospholipid organization in erythrocyte membrane of the marine bivalve mollusc Scapharca broughtoni (Schrenck). Comp Biochem Phys 69B:599–604CrossRefGoogle Scholar
  36. 36.
    Zakhartsev MV, Naumenko NV, Chelomin VP (1998) Non-methylene-interrupted fatty acids in phospholipids of the membranes of the mussel Crenomytilus grayanus. Russ J Mar Biol 24:183–186Google Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Edouard Kraffe
    • 1
    Email author
  • Jacques Grall
    • 2
  • Elena Palacios
    • 3
  • Citlali Guerra
    • 4
  • Philippe Soudant
    • 2
  • Yanic Marty
    • 1
  1. 1.Unité Mixte CNRS 6521Université de Bretagne OccidentaleBrest Cedex 3France
  2. 2.Unité Mixte CNRS 6539, Institut Universitaire Européen de la MerUniversité de Bretagne OccidentalePlouzanéFrance
  3. 3.Centro de Investigaciones Biologicas del Noroeste (CIBNOR)La PazMexico
  4. 4.Alfred-Wegener Institute for Polar and Marine Research (AWI)BremerhavenGermany

Personalised recommendations