Skip to main content
Log in

Trans Fatty Acid-Induced NF-κB Activation Does Not Induce Insulin Resistance in Cultured Murine Skeletal Muscle Cells

  • Communication
  • Published:
Lipids

An Erratum to this article was published on 30 April 2010

Abstract

Long-chain saturated fatty acids such as palmitic acid induce insulin resistance and NF-κB activation in skeletal muscle cells. Here we investigated the effects of long-chain fatty acid (FA) saturation and configuration on NF-κB activity and insulin sensitivity in cultured skeletal muscle cells. Of all tested unsaturated FAs, only elaidic acid (3-fold), cis9,trans11-CLA (3-fold) and trans10,cis12-CLA (13-fold) increased NF-κB transactivation in myotubes. This was not accompanied by decreased insulin sensitivity (measured as insulin-induced glucose uptake and GLUT4 translocation). We therefore conclude that FA-induced NF-κB activation is not sufficient for the induction of insulin resistance in skeletal muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

AA:

Arachidonic acid

BSA:

Bovine serum albumin

CLA:

Conjugated linoleic acid

DAG:

Diacylglycerol

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

IL-6:

Interleukin-6

MUFA:

Monounsaturated fatty acids

NF-κB:

Nuclear factor kappa B

PUFA:

Polyunsaturated fatty acids

SFA:

Saturated fatty acids

TNF-α:

Tumor necrosis factor-alpha

References

  1. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    Article  CAS  PubMed  Google Scholar 

  2. Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50:1612–1617

    Article  CAS  PubMed  Google Scholar 

  3. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  CAS  PubMed  Google Scholar 

  4. Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101–109

    Article  CAS  PubMed  Google Scholar 

  5. Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210

    Article  CAS  PubMed  Google Scholar 

  6. Sabin MA, Stewart CE, Crowne EC, Turner SJ, Hunt LP, Welsh GI, Grohmann MJ, Holly JM, Shield JP (2007) Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intramyocellular lipid. J Cell Physiol 211:244–252

    Article  CAS  PubMed  Google Scholar 

  7. Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS (2004) Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J 382:619–629

    Article  CAS  PubMed  Google Scholar 

  8. Jove M, Planavila A, Laguna JC, Vazquez-Carrera M (2005) Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells. Endocrinology 146:3087–3095

    Article  CAS  PubMed  Google Scholar 

  9. Jove M, Planavila A, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M (2006) Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation. Endocrinology 147:552–561

    Article  CAS  PubMed  Google Scholar 

  10. Weigert C, Brodbeck K, Staiger H, Kausch C, Machicao F, Haring HU, Schleicher ED (2004) Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-kappaB. J Biol Chem 279:23942–23952

    Article  CAS  PubMed  Google Scholar 

  11. Sinha S, Perdomo G, Brown NF, O’Doherty RM (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kB. J Biol Chem 279:41294–41301

    Article  CAS  PubMed  Google Scholar 

  12. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ et al (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119:285–298

    Article  CAS  PubMed  Google Scholar 

  13. Sriwijitkamol A, Christ-Roberts C, Berria R, Eagan P, Pratipanawatr T, DeFronzo RA, Mandarino LJ, Musi N (2006) Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 55:760–767

    Article  CAS  PubMed  Google Scholar 

  14. Ropelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC, Cintra DE, Fernandes MF, Flores MB, Velloso LA et al (2006) Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol 577:997–1007

    Article  CAS  PubMed  Google Scholar 

  15. Rohl M, Pasparakis M, Baudler S, Baumgartl J, Gautam D, Huth M, De Lorenzi R, Krone W, Rajewsky K, Bruning JC (2004) Conditional disruption of IkappaB kinase 2 fails to prevent obesity-induced insulin resistance. J Clin Invest 113:474–481

    PubMed  Google Scholar 

  16. Hommelberg PP, Plat J, Langen RC, Schols AM, Mensink RP (2009) Fatty acid-induced NF-{kappa}B activation and insulin resistance in skeletal muscle are chain length dependent. Am J Physiol Endocrinol Metab 296:E114–E120

    Article  CAS  PubMed  Google Scholar 

  17. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. Faseb J 15:1169–1180

    Article  CAS  PubMed  Google Scholar 

  18. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2003) Enhanced myogenic differentiation by extracellular matrix is regulated at the early stages of myogenesis. In Vitro Cell Dev Biol Anim 39:163–169

    CAS  PubMed  Google Scholar 

  19. Bragt MC, Plat J, Mensink M, Schrauwen P, Mensink RP (2009) Anti-inflammatory effect of rosiglitazone is not reflected in expression of NFkappaB-related genes in peripheral blood mononuclear cells of patients with type 2 diabetes mellitus. BMC Endocr Disord 9:8

    Article  PubMed  CAS  Google Scholar 

  20. Rijkelijkhuizen JM, Doesburg T, Girman CJ, Mari A, Rhodes T, Gastaldelli A, Nijpels G, Dekker JM (2009) Hepatic fat is not associated with beta-cell function or postprandial free fatty acid response. Metabolism 58:196–203

    Article  CAS  PubMed  Google Scholar 

  21. Mai K, Andres J, Biedasek K, Weicht J, Bobbert T, Sabath M, Meinus S, Reinecke F, Mohlig M, Weickert MO et al (2009) Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes 58:1532–1538

    Article  CAS  PubMed  Google Scholar 

  22. Dimopoulos N, Watson M, Sakamoto K, Hundal HS (2006) Differential effects of palmitate and palmitoleate on insulin action and glucose utilisation in rat L6 skeletal muscle cells. Biochem J 399:473–481

    Article  CAS  PubMed  Google Scholar 

  23. Bauman DE, Mather IH, Wall RJ, Lock AL (2006) Major advances associated with the biosynthesis of milk. J Dairy Sci 89:1235–1243

    Article  CAS  PubMed  Google Scholar 

  24. Ladner KJ, Caligiuri MA, Guttridge DC (2003) Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 278:2294–2303

    Article  CAS  PubMed  Google Scholar 

  25. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    Article  CAS  PubMed  Google Scholar 

  26. Tardy AL, Giraudet C, Rousset P, Rigaudiere JP, Laillet B, Chalancon S, Salles J, Loreau O, Chardigny JM, Morio B (2008) Effects of trans MUFA from dairy and industrial sources on muscle mitochondrial function and insulin sensitivity. J Lipid Res 49:1445–1455

    Article  CAS  PubMed  Google Scholar 

  27. Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, Portocarrero CP, Peck LW, Nickel KP, Belury MA (1998) Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun 244:678–682

    Article  CAS  PubMed  Google Scholar 

  28. Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ et al (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50:1149–1157

    Article  CAS  PubMed  Google Scholar 

  29. Henriksen EJ, Teachey MK, Taylor ZC, Jacob S, Ptock A, Kramer K, Hasselwander O (2003) Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. Am J Physiol Endocrinol Metab 285:E98–E105

    CAS  PubMed  Google Scholar 

  30. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542

    Article  CAS  PubMed  Google Scholar 

  31. Clement L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    Article  CAS  PubMed  Google Scholar 

  32. Kelley DS, Vemuri M, Adkins Y, Gill SH, Fedor D, Mackey BE (2009) Flaxseed oil prevents trans-10, cis-12-conjugated linoleic acid-induced insulin resistance in mice. Br J Nutr 101:701–708

    Article  CAS  PubMed  Google Scholar 

  33. Vemuri M, Kelley DS, Mackey BE, Rasooly R, Bartolini G (2007) Docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) prevents trans-10, cis-12 conjugated linoleic acid (CLA)-induced insulin resistance in mice. Metab Syndr Relat Disord 5:315–322

    Article  CAS  PubMed  Google Scholar 

  34. Raff M, Tholstrup T, Basu S, Nonboe P, Sorensen MT, Straarup EM (2008) A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. J Nutr 138:509–514

    CAS  PubMed  Google Scholar 

  35. Riserus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25:1516–1521

    Article  CAS  PubMed  Google Scholar 

  36. Riserus U, Vessby B, Arnlov J, Basu S (2004) Effects of cis-9, trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr 80:279–283

    CAS  PubMed  Google Scholar 

  37. Riserus U, Basu S, Jovinge S, Fredrikson GN, Arnlov J, Vessby B (2002) Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 106:1925–1929

    Article  CAS  PubMed  Google Scholar 

  38. Itani SI, Zhou Q, Pories WJ, MacDonald KG, Dohm GL (2000) Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 49:1353–1358

    Article  CAS  PubMed  Google Scholar 

  39. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, Vanzulli A, Testolin G, Pozza G, Del Maschio A et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606

    Article  CAS  PubMed  Google Scholar 

  40. Schmitz-Peiffer C (2000) Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal 12:583–594

    Article  CAS  PubMed  Google Scholar 

  41. Sebastian D, Herrero L, Serra D, Asins G, Hegardt FG (2007) CPT I overexpression protects L6E9 muscle cells from fatty acid-induced insulin resistance. Am J Physiol Endocrinol Metab 292:E677–E686

    Article  CAS  PubMed  Google Scholar 

  42. Reubsaet FA, Veerkamp JH, Trijbels JM, Monnens LA (1989) Total and peroxisomal oxidation of various saturated and unsaturated fatty acids in rat liver, heart and m. quadriceps. Lipids 24:945–950

    Article  CAS  PubMed  Google Scholar 

  43. DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72:905–911

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon C. J. Langen.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11745-010-3419-y

About this article

Cite this article

Hommelberg, P.P.H., Langen, R.C.J., Schols, A.M.W.J. et al. Trans Fatty Acid-Induced NF-κB Activation Does Not Induce Insulin Resistance in Cultured Murine Skeletal Muscle Cells. Lipids 45, 285–290 (2010). https://doi.org/10.1007/s11745-010-3388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3388-1

Keywords

Navigation