Skip to main content
Log in

Fetal Bovine Serum Concentration Affects Δ9 Desaturase Activity of Trypanosoma cruzi

  • Original Article
  • Published:
Lipids

Abstract

Fetal bovine serum (FBS) is an important factor in the culture of Trypanosoma cruzi, since this parasite obtains and metabolizes fatty acids (FAs) from the culture medium, and changes in FBS concentration reduce the degree of unsaturation of FAs in phosphoinositides. When T. cruzi epimastigotes were cultured with 5% instead of 10% FBS, and stearic acid was used as the substrate, ∆9 desaturase activity decreased by 50%. Apparent K m and V m values for stearic acid, determined from Lineaweaver–Burk plots, were 2 μM and 219 pmol/min/mg of protein, respectively. In studies of the requirement for reduced pyridine nucleotide, ∆9 desaturase activity reached a maximum with 8 μM NADH and then remained constant; the apparent K m and V m were 4.3 μM and 46.8 pmol/min/mg of protein, respectively. The effect of FBS was observed only for ∆9 desaturase activity; ∆12 desaturase activity was not affected. The results suggest that decreased FBS in culture medium is a signal that modulates ∆9 desaturase activity in T. cruzi epimastigotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

FBS:

Fetal bovine serum

EDTA:

Ethylenediaminetetraacetic acid

FAME:

Fatty acid methyl esters

FFA:

Free fatty acid

FAs:

Fatty acids

HPLC:

High performance liquid chromatography

HEPES:

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NL:

Neutral lipid

PL:

Phospholipid

PMSF:

Phenylmethylsulphonyl fluoride

PUFAs:

Polyunsaturated fatty acids

PC:

Phosphatidylcholine

SEM:

Standard error of the mean

TLC:

Thin layer chromatography

References

  1. Fish WR (1995) Lipid and membrane metabolism of the malaria parasite and the African trypanosome. In: Müller M, Marr JJ (eds) Biochemistry and molecular biology of parasites. Academic Press, New York

    Google Scholar 

  2. Kasai T, Watanabe T, Fucuchima H, Lida H, Nozawa Y (1981) Adaptative modification of membrane lipids in Tetrahymena pyriformis during starvation. Biochim Biophys Acta 666:36–46

    CAS  PubMed  Google Scholar 

  3. Wainszelbaum MJ, Belaunzarán ML, Lammel EM, Florin-Christensen M, Florin-Christensen J, Isola EL (2003) Free fatty acids induce cell differentiation to infective forms in Trypanosoma cruzi. Biochem J 375:705–712

    Article  CAS  PubMed  Google Scholar 

  4. Racagni G, de Lema MG, Hernández G, Machado-Domenech EE (1995) Fetal bovine serum induces changes in fatty acid composition of Trypanosoma cruzi phosphoinositides. Can J Microbiol 41:951–954

    Article  CAS  PubMed  Google Scholar 

  5. Florin-Christensen MJ, Florin-Christensen E, Isola E, Lammel E, Meinardi R, Brenner RR, Rasmussen L (1997) Temperature acclimation of Trypanosoma cruzi epimastigote and metacyclic trypomastigote lipids. Mol Biochem Parasitol 88:25–33

    Article  CAS  PubMed  Google Scholar 

  6. Brenner RR (1989) Factors influencing fatty acid long elongation and desaturation. In: Vergrosen AJ, Crawford M (eds) The role of fats in human nutrition. Academic Press, London

    Google Scholar 

  7. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostag Leukot Ess 86:97–106

    Article  Google Scholar 

  8. Su HM, Brenna T (1998) Simultaneous measurement of desaturase activities using stable isotope tracers or a nontracer method. Anal Biochem 261:43–50

    Article  CAS  PubMed  Google Scholar 

  9. Barton PG, Gunstone FD (1975) Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. J Biol Chem 250:4470–4476

    CAS  PubMed  Google Scholar 

  10. Sajbidor J (1997) Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit Rev Biotechnol 17:87–103

    Article  CAS  PubMed  Google Scholar 

  11. Villasuso AL, Aveldaño M, Vicario A, Machado-Domenech EE, García de Lema M (2005) Culture age and carbamoylcholine increase the incorporation of endogenously synthesized linoleic acid in lipids of Trypanosoma cruzi epimastigotes. Biochim Biophys Acta 1735:185–191

    CAS  PubMed  Google Scholar 

  12. Aeberhard EE, de Lema MBG, Bronia DH (1981) Biosynthesis of fatty acids by Trypanosoma cruzi. Lipids 16:623–625

    Article  CAS  Google Scholar 

  13. de Lema MG, Aeberhard EE (1986) Desaturation of fatty acids in Trypanosoma cruzi. Lipids 21:718–720

    Article  PubMed  Google Scholar 

  14. Petrini GA, Altabe SG, Uttaro AD (2004) Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor. Eur J Biochem 271:1079–1086

    Article  CAS  PubMed  Google Scholar 

  15. Maldonado RA, Kuniyoshi RK, Linss JG, Almeida IC (2006) Trypanosoma cruzi oleate desaturase: molecular characterization and comparative analysis in other trypanosomatids. J Parasitol 92:1064–1074

    Article  CAS  PubMed  Google Scholar 

  16. Tripodi KE, Buttigliero LV, Altabe SG, Uttaro AD (2005) Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J 273:271–280

    Article  Google Scholar 

  17. Warren LG (1960) Metabolism of Schizotripanum cruzi Chagas I. Effect of culture age and substrate concentration on respiration rate. J Parasitol 46:529–539

    Article  CAS  PubMed  Google Scholar 

  18. Racagni G, García de Lema M, Domenech CE, Machado de Domenech EE (1992) Phospholipids in Trypanosoma cruzi: phophoinositide composition and turnover. Lipids 27:275–278

    Article  CAS  PubMed  Google Scholar 

  19. Marra CA, Alaniz MJ, Brenner RR (1988) A dexamethasone-induced protein stimulates Δ9-desaturase activity in rat liver microsomes. Biochim Biophys Acta 958:93–98

    CAS  PubMed  Google Scholar 

  20. Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  21. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

  22. Henderson R, Tocher D (1992) Thin Layer Chromatography. In: Hamilton R, Hamilton S (eds) Lipid Analysis a practical approach. Oxford University Press, Oxford

    Google Scholar 

  23. Kates M (1972) Radioisotopic techniques in lipidology. In: Work TS, Work E (eds) Techniques in lipidology. North Holland/Elsevier, Amsterdam/New York

    Google Scholar 

  24. Shipiro H, Prescott D (1978) Preliminary characterization of the delta-9 desaturase of Tetrahymena pyriformis W. Comp Biochem Physiol Part B Biochem 61:513–520

    Article  CAS  Google Scholar 

  25. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  26. Fujimori K, Anamnart S, Nakagawa Y, Sugioka S, Ohta D, Oshima Y, Yamada Y, Harashima S (1997) Isolation and characterization of mutations affecting expression of the delta9- fatty acid desaturase gene, OLE1, in Saccharomyces cerevisiae. FEBS Lett 413:226–230

    Article  CAS  PubMed  Google Scholar 

  27. Peluffo RO, Brenner RR (1974) Influence of dietary protein on Δ6 and Δ9 desaturation of fatty acids in rats of different ages in different seasons. J Nutr 104:894–900

    CAS  PubMed  Google Scholar 

  28. Miyazaki M, Bruggink S, Ntambi J (2006) Identification of mouse palimitoyl-CoA ∆9 desaturase. J Lipid Res 47:700–704

    Article  CAS  PubMed  Google Scholar 

  29. Sakamoto T, Wada H, Nishida I, Ohmori M, Murata N (1994) ∆9 Acyl-lipid desaturases of Cyanobacteria. J Biol Chem 269:25576–25580

    CAS  PubMed  Google Scholar 

  30. Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    CAS  PubMed  Google Scholar 

  31. Pugh EL, Kates M (1975) Characterization of a membrane-bound phospholipid desaturase system of Candida lipolytica. Biochim Biophys Acta 380:442–453

    CAS  PubMed  Google Scholar 

  32. Koudelka AP, Bradley DK, Kambadur N, Freguson KA (1983) Oleic acid desaturation in Tetrahymena pyriformis. Biochim Biophys Acta 751:129–137

    CAS  PubMed  Google Scholar 

  33. Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA (2006) A bifunctional ∆12, ∆15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem 281:36533–36541

    Article  CAS  PubMed  Google Scholar 

  34. Gurr MI, Harwood JL, Frayn KN (2002) Lipid biochemistry, 5th edn. Blackwell Science, Oxford

    Google Scholar 

  35. Gabrielides C, Hamill A, Scott W (1982) Requirements of ∆9 and ∆12 fatty acid desaturation in Neurospora. Biochim Biophys Acta 712:505–514

    CAS  PubMed  Google Scholar 

  36. Domergue F, Abbadi A, Ott C, Zank TK, Zahringer U, Heinz E (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long chain polyunsaturated fatty acids biosynthesis reconstituted in Yeast. J Biol Chem 278:35115–35126

    Article  CAS  PubMed  Google Scholar 

  37. Domergue F, Abbadi A, Zahringer U, Moreau H, Heinz E (2005) In vivo characterization of the first acyl CoA ∆6 desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  CAS  PubMed  Google Scholar 

  38. Irazú CE, González-Rodríguez S, Brenner RR (1993) Δ5 Desaturase activity in rat kidney microsomes. Mol Cell Biochem 129:31–37

    Article  PubMed  Google Scholar 

  39. Fukushima H, Nagao S, Okano Y, Nozawa Y (1977) Studies on Tetrahymena membranes. Palmitoyl-coenzymeA desaturase, a possible key enzyme for temperature adaptation in Tetrahymena microsomes. Biochim Biophys Acta 488:442–453

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Marta Aveldaño and Dr. Carlos Marra for determination of FBS FA composition, and FA analysis, respectively. This work was supported by FONCyT, Argentina and SECyT, UNRC, Río Cuarto, Córdoba, Argentina. A.L.V. is a research career scientist of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirta García de Lema.

About this article

Cite this article

Villasuso, A.L., Romero, P., Woelke, M. et al. Fetal Bovine Serum Concentration Affects Δ9 Desaturase Activity of Trypanosoma cruzi . Lipids 45, 275–283 (2010). https://doi.org/10.1007/s11745-010-3387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3387-2

Keywords

Navigation