Skip to main content
Log in

Chemical Structure of Bacteriovorax stolpii Lipid A

  • Original Article
  • Published:
Lipids

Abstract

Bdellovibrionales is a phylogenetically diverse group of predatory prokaryotes, which consists of the two families Bdellovibrionaceae and Bacteriovoracaceae. We describe LPS and lipid A of the type strain Bacteriovorax stolpii DSM 12778, representing the first characterized endotoxin of a Bacteriovoracaceae member. It has a smooth form LPS, which was identified by SDS-polyacrylamide gel electrophoresis. The lipid A structure was determined by combined gas chromatography–mass spectrometry, electrospray ionization mass spectrometry and NMR spectroscopy. Its backbone consists of two β-(1 → 6)-linked 2,3-diamino-2,3-dideoxy-d-glucopyranoses (GlcpN3N) carrying a pyrophosphoethanolamine at O-4′ of the non-reducing sugar and a phosphate group linked to O-1 of the reducing GlcpN3N. Positions 2, 3, 2′ and 3′ of the two GlcpN3N are acylated with primary 3-hydroxy fatty acids and one of those carries a secondary fatty acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BALOs:

Bdellovibrio-and-like organisms

CID:

Collision induced dissociation

COSY:

Correlation spectroscopy

ESI–MS:

Electrospray ionization–mass spectrometry

EXSY:

Exchange spectroscopy

FTICR MS:

Fourier transform ion cyclotron resonance mass spectrometry

GC–MS:

Gas chromatography–mass spectrometry

GlcpN3N:

2,3-diamino-2,3-dideoxy-d-glucopyranose

HMBC:

Heteronuclear multiple bond coherence

HMQC:

Heteronuclear multiple quantum coherence

LPS:

Lipopolysaccharide

MALDI-ToF:

Matrix assisted laser desorption/ionisation-time of flight mass spectrometry

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser effect spectroscopy

P I :

Phosphate residue at C-1 of the reducing sugar GlcpN3NI

P II :

Phosphate residue at C-4 of the non-reducing sugar GlcpN3NII

PEtN:

Phosphoethanolamine

R-form LPS:

Rough form lipopolysaccharide

ROESY:

Rotating frame nuclear Overhauser effect spectroscopy

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

S-form LPS:

Smooth form lipopolysaccharide

TOCSY:

Total correlation spectroscopy

References

  1. Snyder AR, Williams HN, Baer ML, Walker KE, Stine OC (2002) 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol 52:2089–2094

    Article  CAS  PubMed  Google Scholar 

  2. Stolp H, Petzold H (1962) Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. Phytopathol Z 45:364–390

    Article  Google Scholar 

  3. Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus gen et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29:217–248

    Article  CAS  PubMed  Google Scholar 

  4. Baer ML, Ravel J, Chun J, Hill RT, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 50(Pt 1):219–224

    CAS  PubMed  Google Scholar 

  5. Baer ML, Ravel J, Pineiro SA, Guether-Borg D, Williams HN (2004) Reclassification of salt-water Bdellovibrio sp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int J Syst Evol Microbiol 54(Pt 4):1011–1016

    Article  CAS  PubMed  Google Scholar 

  6. Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms(BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54(Pt 5):1439–1452

    Article  CAS  PubMed  Google Scholar 

  7. Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371

    Article  CAS  PubMed  Google Scholar 

  8. Schwudke D, Strauch E, Krueger M, Appel B (2001) Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 24:385–394

    Article  CAS  PubMed  Google Scholar 

  9. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A et al (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692

    Article  CAS  PubMed  Google Scholar 

  10. Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H, Muller M, Brecker L, Gronow S, Lindner B (2003) The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-d-mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 278:27502–27512

    Article  CAS  PubMed  Google Scholar 

  11. Diedrich DL, Denny CF, Hashimoto T, Conti SF (1970) Facultatively parasitic strain of Bdellovibrio bacteriovorus. J Bacteriol 101:989–996

    CAS  PubMed  Google Scholar 

  12. Seidler RJ, Mandel M, Babtist JN (1972) Molecular heterogeneity of the bdellovibrios: evidence of two new species. J Bacteriol 109:209–217

    CAS  Google Scholar 

  13. Steiner S, Conti SF, Lester RL (1973) Occurrence of phosphonosphingolipids in Bdellovibrio bacteriovorus strain UKi2. J Bacteriol 116:1199–1211

    CAS  PubMed  Google Scholar 

  14. Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks EE, Kaneshiro ES (2001) A novel sphingophosphonolipid head group 1-hydroxy-2-aminoethyl phosphonate in Bdellovibrio stolpii. Lipids 36:513–519

    Article  CAS  PubMed  Google Scholar 

  15. Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner J-L (2006) Detection and identification of Bacteriovorax stolpii UKi2 sphingophosphonolipid molecular species. J Am Soc Mass Spectrom 18:394–403

    Article  PubMed  Google Scholar 

  16. Beck S, Schwudke D, Appel B, Linscheid M, Strauch E (2005) Characterization of outer membrane protein fractions of Bdellovibrionales. FEMS Microbiol Lett 243:211–217

    Article  CAS  PubMed  Google Scholar 

  17. Galanos C, Luderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249

    Article  CAS  PubMed  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the 455 assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  19. Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  CAS  PubMed  Google Scholar 

  20. Bryn K, Jantzen E (1982) Analysis of lipopolysaccharides by methanolysis, trifluoroacetylation, and gas chromatography on a fused-silica capillary column. J Chromatogr 240:405–413

    Article  CAS  Google Scholar 

  21. Gerwig GJ, Kamerling JP, Vliegenthart JF (1978) Determination of the d and l configuration of neutral monosaccharides by high-resolution capillary G.L.C. Carbohydr Res 62:349–357

    Article  CAS  Google Scholar 

  22. Gerwig GJ, Kamerling JP, Vliegenthart JF (1979) Determination of the absolute configuration of mono-saccharides in complex carbohydrates by capillary G.L.C. Carbohydr Res 77:1–17

    Article  CAS  Google Scholar 

  23. Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    Article  CAS  PubMed  Google Scholar 

  24. Domon B, Costello CE (1988) A systematic nomenclature of carbohydrate fragmentation in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409

    Article  CAS  Google Scholar 

  25. Sforza S, Silipo A, Molinaro A, Marchelli R, Parrilli M, Lanzetta R (2004) Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. J Mass Spectrom 39:378–383

    Article  CAS  PubMed  Google Scholar 

  26. Corsaro MM, Piaz FD, Lanzetta R, Naldi T, Parrilli M (2004) Structure of lipid A from Pseudomonas corrugata by electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 18:853–858

    Article  CAS  PubMed  Google Scholar 

  27. Brecker L (2003) Nuclear magnetic resonance of lipid A—the influence of solvents on spin relaxation and spectral quality. Chem Phys Lipids 125:27–39

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Hollingsworth RI (1995) A solvent system for the 479 high-resolution proton nuclear magnetic resonance spectroscopy of membrane lipids. Anal Biochem 225:242–251

    Article  CAS  PubMed  Google Scholar 

  29. Ribeiro AA, Zhou ZM, Raetz CRH (1999) Multi-dimensional NMR structural analyses of purified Lipid X and Lipid A (endotoxin). Magn Reson Chem 37:620–630

    Article  CAS  Google Scholar 

  30. Zhou Z, Ribeiro AA, Raetz CRH (2000) High-resolution NMR spectroscopy of lipid A molecules containing 4-amino-4-deoxy-l-arabinose and phosphoethanolamine substituents. Different attachment sites on lipid A molecules from NH4VO3-treated Escherichia coli versus kdsA mutants of Salmonella typhimurium. J Biol Chem 275:13542–13551

    Article  CAS  PubMed  Google Scholar 

  31. Rietschel ET (1976) Absolute configuration of 3-hydroxy fatty acids present in lipopolysaccharides from various bacterial groups. Eur J Biochem 64:423–428

    Article  CAS  PubMed  Google Scholar 

  32. Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent SM (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 67:264–277

    PubMed  Google Scholar 

  33. Zughaier SM, Lindner B, Howe J, Garidel P, Koch MHJ, Brandenburg K, Stephens DS (2007) Physicochemical characterization and biological activity of lipooligosaccharides and lipid A from Neisseria meningitidis. J Endotoxin Res 13:343–357

    Article  CAS  PubMed  Google Scholar 

  34. Kulshin VA, Zaehringer U, Lindner B, Frasch CE, Tsai CM, Dmitriev BA, Rietschel ET (1992) Structural characterization of the lipid A component of pathogenic Neisseria meningitidis. J Bacteriol 174:1793–1800

    CAS  PubMed  Google Scholar 

  35. Choma A, Sowinski P (2004) Characterization of Mesorhizobium huakuii lipid A containing both d-galacturonic acid and phosphate residues. Eur J Biochem 271:1310–1322

    Article  CAS  PubMed  Google Scholar 

  36. Que-Gewirth NL, Ribeiro AA, Kalb SR, Cotter RJ, Bulach DM, Adler B, Girons IS, Werts C, Raetz CR (2004) A methylated phosphate group and four amide-linked acyl chains in Leptospira interrogans lipid A. The membrane anchor of an unusual lipopolysaccharide that activates TLR2. J Biol Chem 279:25420–25429

    Article  CAS  PubMed  Google Scholar 

  37. Varbanets LD (1994) The endotoxins of Gram-negative bacteria: their structure and biological role. Mikrobiol Z 56:76–97

    CAS  PubMed  Google Scholar 

  38. Alexander C, Rietschel ET (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    CAS  PubMed  Google Scholar 

  39. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    CAS  PubMed  Google Scholar 

  40. Hase S, Rietschel ET (1976) Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups. Eur J Biochem 63:101–107

    Article  CAS  PubMed  Google Scholar 

  41. Rietschel ET, Brade L, Schade FU, Seydel U, Zahringer U, Mamat U, Schmidt G, Ulmer AJ, Loppnow H, Flad HD et al (1993) Bacterial endotoxins: relationship between chemical structure and biological effect. Immun Infekt 21:26–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft Grant LI309/29-1 (to F. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Linscheid.

Additional information

S. Beck and F. D. Müller contributed equally to this work.

Electronic supplementary material

About this article

Cite this article

Beck, S., Müller, F.D., Strauch, E. et al. Chemical Structure of Bacteriovorax stolpii Lipid A. Lipids 45, 189–198 (2010). https://doi.org/10.1007/s11745-010-3383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3383-6

Keywords

Navigation