Skip to main content
Log in

Rapid Development of Fasting-Induced Hepatic Lipidosis in the American Mink (Neovison vison): Effects of Food Deprivation and Re-Alimentation on Body Fat Depots, Tissue Fatty Acid Profiles, Hematology and Endocrinology

  • Original Article
  • Published:
Lipids

Abstract

Hepatic lipidosis is a common pathological finding in the American mink (Neovison vison) and can be caused by nutritional imbalance due to obesity or rapid body weight loss. The objectives of the present study were to investigate the timeline and characterize the development of hepatic lipidosis in mink in response to 0–7 days of food deprivation and liver recovery after 28 days of re-feeding. We report here the effects on hematological and endocrine variables, body fat mobilization, the development of hepatic lipidosis and the alterations in the liver lipid classes and tissue fatty acid (FA) sums. Food deprivation resulted in the rapid mobilization of body fat, most notably visceral, causing elevated hepatosomatic index and increased liver triacylglycerol content. The increased absolute amounts of liver total phospholipids and phosphatidylcholine suggested endoplasmic reticulum stress. The hepatic lipid infiltration and the altered liver lipid profiles were associated with a significantly reduced proportion of n-3 polyunsaturated FA (PUFA) in the livers and the decrease was more evident in the females. Likewise, re-feeding of the female mink resulted in a more pronounced recovery of the liver n-3 PUFA. The rapid decrease in the n-3/n-6 PUFA ratio in response to food deprivation could trigger an inflammatory response in the liver. This could be a key contributor to the pathophysiology of fatty liver disease in mink influencing disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADR:

Adrenal

ALT:

Alanine aminotransferase

BMI:

Body mass index

BW:

Body weight

CE:

Cholesteryl esters

CerPCho:

Sphingomyelin

CHOL:

Cholesterol

DG:

Diacylglycerols

ER:

Endoplasmic reticulum

FA:

Fatty acid

FFA:

Free fatty acids

HOMA:

Homeostasis model assessment

HSI:

Hepatosomatic index

MUFA:

Monounsaturated fatty acids

NAFLD:

Non-alcoholic fatty liver disease

P:

Plasma

PL:

Phospholipids

PtdCho:

Phosphatidylcholine

PUFA:

Polyunsaturated fatty acids

RF:

Re-fed

SFA:

Saturated fatty acids

T3 :

Triiodothyronine

T4 :

Thyroxine

TAG:

Triacylglycerol

UFA:

Unsaturated fatty acids

UPR:

Unfolded protein response

VLDL:

Very-low-density lipoprotein

References

  1. Hunter DB, Barker IK (1996) Digestive system of mink. In: Hunter DB, Lemieux N (eds) Mink… biology, health and disease. Canada Mink Breeders’ Association, University of Guelph, Graphic and Print Services, Guelph

  2. Clausen TN, Olesen CR, Hansen O, Wamberg S (1992) Nursing sickness in lactating mink (Mustela vison). I. Epidemiological and pathological observations. Can J Vet Res 56:89–94

    CAS  PubMed  Google Scholar 

  3. Schneider RR (1996) Diseases of the lactation period. In: Hunter DB, Lemieux N (eds) Mink… biology, health and disease. Canada Mink Breeders’ Association, University of Guelph, Graphic and Print Services, Guelph

  4. Damgaard BM, Clausen TN, Henriksen P (1994) Effect of protein and fat content in feed on plasma alanine aminotransferase and hepatic fatty infiltration in mink. J Vet Med 41A:620–629

    Google Scholar 

  5. Bjornvad CR, Elnif J, Sangild PT (2004) Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine. J Comp Physiol 174B:625–632

    Google Scholar 

  6. Mustonen A-M, Pyykönen T, Paakkonen T, Ryökkynen A, Asikainen J, Aho J, Mononen J, Nieminen P (2005) Adaptations to fasting in the American mink (Mustela vison): carbohydrate and lipid metabolism. Comp Biochem Physiol 140A:195–202

    CAS  Google Scholar 

  7. Rouvinen-Watt K, White MB, Campbell R (2005) Mink feeds and feeding, applied feeding guide and mink feed ingredient database. CD-ROM. Ontario Ministry of Agriculture and Food through the Agricultural Research Institute of Ontario and the Nova Scotia Agricultural College

  8. Mustonen A-M, Nieminen P, Hyvärinen H, Asikainen J (2000) Exogenous melatonin elevates the plasma leptin and thyroxine concentrations of the mink (Mustela vison). Z Naturforsch 55C:806–813

    Google Scholar 

  9. Videla LA, Rodrigo R, Araya J, Poniachik J (2004) Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to non-alcoholic fatty liver disease. Free Radic Biol Med 37:1499–1507

    Article  CAS  PubMed  Google Scholar 

  10. Adams LA, Angulo P, Lindor KD (2005) Nonalcoholic fatty liver disease. Can Med Ass J 172:899–905

    Article  Google Scholar 

  11. Rouvinen-Watt K (2003) Nursing sickness in the mink (Mustela vison)—a metabolic mystery or a familiar foe? Can J Vet Res 67:161–168

    CAS  PubMed  Google Scholar 

  12. Mustonen A-M, Puukka M, Rouvinen-Watt K, Aho J, Asikainen J, Nieminen P (2009) Response to fasting in an unnaturally obese carnivore, the captive European polecat Mustela putorius. Exp Biol Med 234:1287–1295

    Article  CAS  Google Scholar 

  13. Nieminen P, Rouvinen-Watt K, Saarela S, Mustonen A-M (2007) Fasting in the American marten (Martes americana): a physiological model of the adaptations of a lean-bodied animal. J Comp Physiol 177B:787–795

    Google Scholar 

  14. Nieminen P, Käkelä R, Pyykönen T, Mustonen A-M (2006) Selective fatty acid mobilization in the American mink (Mustela vison) during food deprivation. Comp Biochem Physiol 145B:81–93

    CAS  Google Scholar 

  15. Nieminen P, Mustonen A-M, Kärjä V, Asikainen J, Rouvinen-Watt K (2009) Fatty acid composition and development of hepatic lipidosis during food deprivation—mustelids as a potential animal model for liver steatosis. Exp Biol Med 234:278–286

    Article  CAS  Google Scholar 

  16. Mustonen A-M, Saarela S, Pyykönen T, Nieminen P (2005) Endocrinologic adaptations to wintertime fasting in the male American mink (Mustela vison). Exp Biol Med 230:612–620

    CAS  Google Scholar 

  17. Mustonen A-M, Puukka M, Saarela S, Paakkonen T, Aho J, Nieminen P (2006) Adaptations to fasting in a terrestrial mustelid, the sable (Martes zibellina). Comp Biochem Physiol 144A:444–450

    CAS  Google Scholar 

  18. Canadian Council on Animal Care (1993) The care and use of experimental animals, vol 1. Olfert ED, Cross BM, McWilliam AA (eds). CCAC, Ottawa

  19. Mustonen A-M, Käkelä R, Käkelä A, Pyykönen T, Aho J, Nieminen P (2007) Lipid metabolism in the adipose tissues of a carnivore, the raccoon dog, during prolonged fasting. Exp Biol Med 232:58–69

    CAS  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  22. Mustonen A-M, Nieminen P, Hyvärinen H (2002) Liver and plasma lipids of spawning burbot. J Fish Biol 61:1318–1322

    Article  CAS  Google Scholar 

  23. Nieminen P, Rouvinen-Watt K, Collins D, Grant J, Mustonen A-M (2006) Fatty acid profiles and relative mobilization during fasting in adipose tissue depots of the American marten (Martes americana). Lipids 41:231–240

    Article  CAS  PubMed  Google Scholar 

  24. Brown JH, Lasiewski RC (1972) Metabolism of weasels: the cost of being long and thin. Ecology 53:939–943

    Article  Google Scholar 

  25. Mustonen A-M, Pyykönen T, Aho J, Nieminen P (2006) Hyperthermia and increased physical activity in the fasting American mink Mustela vison. J Exp Zool 305A:489–498

    Article  CAS  Google Scholar 

  26. Thom MD, Harrington LA, Mcdonald DW (2004) Why are American mink sexually dimorphic? A role for niche separation. Oikos 105:525–535

    Article  Google Scholar 

  27. Westphal SA (2008) Obesity, abdominal obesity, and insulin resistance. Clin Cornerstone 9:23–31

    Article  PubMed  Google Scholar 

  28. Smith DG, Schenk MP (2000) Dissection guide and atlas to the mink. Morton Publishing Company, Colorado

  29. Remillard RL, Armstrong PJ, Davenport DJ (2000) Assisted feeding in hospitalized patients: enteral and parenteral nutrition. In: Hand MS, Thatcher CD, Remillard RL, Roudebush P (eds) Small animal clinical nutrition, 4th edn. Walworth Publishing Company, Mark Morris Institute, Marceline, Missouri

  30. Powers MA, Pappas TN (1989) Physiologic approaches to the control of obesity. Ann Surg 209:255–260

    Article  CAS  PubMed  Google Scholar 

  31. MacDonald ML, Rogers QR, Morris JG (1984) Nutrition of the domestic cat, a mammalian carnivore. Ann Rev Nutr 4:521–562

    Article  CAS  Google Scholar 

  32. Deshmukh DR, Sarnaik AP, Mukhopadhyay A, Portoles M (1991) Effect of arginine-free diet on plasma and tissue amino acids in young and adult ferrets. J Nutr Biochem 2:72–78

    Article  CAS  Google Scholar 

  33. Damgaard BM (1998) Effects of dietary supply of arginine on urinary orotic acid excretion, growth performance and blood parameters in growing mink (Mustela vison) kits fed low-protein diets. Acta Agric Scand 48A:113–121

    Google Scholar 

  34. Roudebush P, Davenport DJ, Dimski DS (2000) Hepatobiliary disease. In: Hand MS, Thatcher CD, Remillard RL, Roudebush P (eds) Small animal clinical nutrition, 4th edn. Walworth Publishing Company, Mark Morris Institute, Marceline, Missouri

  35. Mustonen A-M, Puukka M, Pyykönen T, Nieminen P (2005) Adaptations to fasting in the American mink (Mustela vison): nitrogen metabolism. J Comp Physiol 175B:357–363

    Google Scholar 

  36. Cornelius LM, Jacobs G (1989) Feline hepatic lipidosis. In: Kirk RW (ed) Current veterinary therapy X: small animal practice. WB Saunders, Philadelphia

  37. Ganong WF (2005) Review of medical physiology, 22nd edn. Lange Medical Books, McGraw-Hill, New York

  38. Elliott WH, Elliott DC (2005) Biochemistry and molecular biology, 3rd edn. Oxford University Press, New York

    Google Scholar 

  39. Maugeais C, Tietge UJF, Tsukamoto K, Glick JM, Rader DJ (2000) Hepatic apolipoprotein E expression promotes very low density lipoprotein-apolipoprotein B production in vivo in mice. J Lipid Res 41:1673–1679

    CAS  PubMed  Google Scholar 

  40. Schneider RR, Hunter DB (1992) Nursing disease in the mink. Scientifur 16:239–242

    Google Scholar 

  41. Wamberg S, Clausen TN, Olesen CR, Hansen O (1992) Nursing sickness in lactating mink (Mustela vison): II. Pathophysiology and changes in body fluid composition. Can J Vet Res 56:95–101

    CAS  PubMed  Google Scholar 

  42. Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47:13–18

    Article  CAS  PubMed  Google Scholar 

  43. Guevara M, Baccaro ME, Torre A, Gómez-Ansón B, Ríos J, Torres F, Rami L, Monté-Rubio GC, Martín-Llahí M, Arroyo V, Ginès P (2009) Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis. Am J Gastroenterol 104:1382–1389

    Article  PubMed  Google Scholar 

  44. Clausen TN, Hansen O (1989) Electrolytes in mink with nursing sickness. Acta Physiol Scand 136A:P9

    Google Scholar 

  45. Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35–41

    Article  CAS  PubMed  Google Scholar 

  46. Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  47. Hanada S, Harada M, Kumemura H, Omary MB, Koga H, Kawaguchi T, Taniguchi E, Yoshida T, Hisamoto T, Yanagimoto C, Maeyama M, Ueno T, Sata M (2007) Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. J Hepatol 47:93–102

    Article  CAS  PubMed  Google Scholar 

  48. El-Badry AM, Graf R, Clavien PA (2007) Omega 3–Omega 6: what is right for the liver? J Hepatol 47:718–725

    Article  CAS  PubMed  Google Scholar 

  49. Hynes AM, Rouvinen-Watt K (2007) Monitoring blood glucose levels in female mink during the reproductive cycle: prevention of hyperglycemia during the nursing period. Can J Vet Res 71:241–248

    CAS  PubMed  Google Scholar 

  50. Hynes AM, Rouvinen-Watt K (2007) Monitoring blood glucose levels in female mink during the reproductive cycle: effects of short-term fish oil, chromium picolinate and acetyl-salicylic acid supplementation during late lactation. Can J Vet Res 71:249–255

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to KRW, NSERC Undergraduate Student Research Award to CP and RC), the Canada Mink Breeders’ Association, the Nutricia Research Foundation, the Finnish Fur Breeders’ Association, the Academy of Finland (A-MM and PN), the Mink Farmer’s Research Foundation, Fur Commission USA and the Heger Company. We thank Rae MacInnis, Annette Murphy and Cindy Crossman, the staff of the Canadian Centre for Fur Animal Research, as well as Dr. Tess Astatkie, Dr. Gordon Finley, DVM, Dr. Bruce Ramsay, DVM, Lana Crewe, Jody Muise, Jennifer Dobson, Rauni Kojo and Marja-Liisa Martimo-Halmetoja for the skillful logistical support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsti Rouvinen-Watt.

About this article

Cite this article

Rouvinen-Watt, K., Mustonen, AM., Conway, R. et al. Rapid Development of Fasting-Induced Hepatic Lipidosis in the American Mink (Neovison vison): Effects of Food Deprivation and Re-Alimentation on Body Fat Depots, Tissue Fatty Acid Profiles, Hematology and Endocrinology. Lipids 45, 111–128 (2010). https://doi.org/10.1007/s11745-009-3377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3377-4

Keywords

Navigation