Skip to main content
Log in

n-3 PUFA as Regulators of Cardiac Gene Transcription: A New Link between PPAR Activation and Fatty Acid Composition

  • Original Article
  • Published:
Lipids

Abstract

The fatty acids regulate gene expression directly binding to nuclear receptors or affecting the protein content of transcription factors. In this work, supplementing primary cultures of neonatal rat cardiomyocytes with 60 µM EPA or DHA, we demonstrated by an ELISA assay an increased PPAR β/δ binding to DNA. n-3 PUFA supplementation deeply changed the acyl composition of both cytosolic and nuclear fractions. The high content of total fatty acids, particularly EPA and DHA, and its increase following supplementation suggested a selective accumulation of n-3 PUFAs in the nucleus, supporting the direct interaction of n-3 PUFA with PPAR. The activity of acyl-CoA thioesterase (ACOT), catalyzing the reaction leading to NEFA from acyl-CoA, increased in n-3 PUFA supplemented cells. The NEFA/acyl-CoA ratio is an important regulator of the fatty acid transport to the nucleus and consequent modulation of gene transcription, and although ACOT activity is not the only parameter of this ratio, it is important for the control of the NEFA pool composition. Our data further clarify what happens in cardiomyocytes following n-3 PUFA supplementation, linking the modification of acyl composition to ACOT activity and PPAR activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACOT:

Acyl-CoA thioesterase

A-FABP:

Adipocyte fatty acid binding protein

B23:

Nucleophosmin

BSA:

Bovine serum albumin

CF:

Cytoplasmic fraction

ChREBP:

Carbohydrate response element-binding protein

CVD:

Cardiovascular diseases

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

FABP:

Fatty acid binding protein

FCS:

Fetal calf serum

HNF-4α:

Hepatocyte nuclear factor 4α

HRP:

Horseradish peroxidase

HS:

Horse serum

K-FABP:

Keratinocyte FABP

LXR:

Liver X receptors

MEK1:

Mitogen-activated protein kinase/extracellular signal-regulated kinase 1

NEFA:

Nonesterified fatty acid

NF:

Nuclear fraction

NF kappa B:

Nuclear factor kappa B

PPAR:

Peroxisome proliferator activated receptor

PPRE:

Peroxisome proliferator responsive element

PUFA:

Polyunsaturated fatty acid

RXR:

Retinoid X receptor

SREBP:

Sterol regulatory element-binding protein

TNB:

2-Nitro-5-thiobenzoic acid

WCL:

Whole cell lysate

References

  1. Xue H, Wan M, Song D, Li Y, Li J (2006) Eicosapentaenoic acid and docosahexaenoic acid modulate mitogen-activated protein kinase activity in endothelium. Vascul Pharmacol 44:434–439

    Article  PubMed  CAS  Google Scholar 

  2. Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197:12–24

    Article  PubMed  CAS  Google Scholar 

  3. Weber HS, Selimi D, Huber G (2006) Prevention of cardiovascular diseases and highly concentrated n-3 polyunsaturated fatty acids (PUFAs). Herz 31(Suppl 3):24–30

    PubMed  Google Scholar 

  4. Calder PC (2004) n-3 Fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci 107:1–11

    Article  PubMed  CAS  Google Scholar 

  5. Benatti P, Peluso G, Nicolai R, Calvani M (2004) Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J Am Coll Nutr 23:281–302

    PubMed  CAS  Google Scholar 

  6. Demaison L, Moreau D (2002) Dietary n-3 polyunsaturated fatty acids and coronary heart disease-related mortality: a possible mechanism of action. Cell Mol Life Sci 59:463–477

    Article  PubMed  CAS  Google Scholar 

  7. Jump DB, Botolin D, Wang Y, Xu J, Demeure O, Christian B (2008) Docosahexaenoic acid (DHA) and hepatic gene transcription. Chem Phys Lipids 153:3–13

    Article  PubMed  CAS  Google Scholar 

  8. Bordoni A, Astolfi A, Morandi L, Pession A, Danesi F, Di Nunzio M, Franzoni M, Biagi P (2007) n-3 PUFAs modulate global gene expression profile in cultured rat cardiomyocytes. Implications in cardiac hypertrophy and heart failure. FEBS Lett 581:923–929

    Article  PubMed  CAS  Google Scholar 

  9. Chen R, Liang F, Moriya J, Yamakawa J, Takahashi T, Shen L, Kanda T (2008) Peroxisome proliferator-activated receptors (PPARs) and their agonists for hypertension and heart failure: are the reagents beneficial or harmful? Int J Cardiol 130:131–139

    Article  PubMed  Google Scholar 

  10. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159

    Article  PubMed  CAS  Google Scholar 

  11. Yagev S, Heller M, Pinson A (1984) Changes in cytoplasmic and lysosomal enzyme activities in cultured rat heart cells: the relationship to cell differentiation and cell population in culture. In Vitro 20:893–898

    Article  PubMed  CAS  Google Scholar 

  12. Wright G, Singh IS, Hasday JD, Farrance IK, Hall G, Cross AS, Rogers TB (2002) Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. Am J Physiol Heart Circ Physiol 282:H872–H879

    PubMed  CAS  Google Scholar 

  13. Gilde AJ, Van Bilsen M (2003) Peroxisome proliferator-activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle. Acta Physiol Scand 178:425–434

    Article  PubMed  CAS  Google Scholar 

  14. Xu M, McCarrey JR, Hecht NB (2008) A cytoplasmic variant of the KH-type splicing regulatory protein serves as a decay-promoting factor for phosphoglycerate kinase 2 mRNA in murine male germ cells. Nucleic Acids Res 36:7157–7167

    Article  PubMed  CAS  Google Scholar 

  15. van Deursen D, Jansen H, Verhoeven AJ (2008) Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia 51:2078–2087

    Article  PubMed  CAS  Google Scholar 

  16. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  17. Stoffel W, Chu F, Ahrens EH (1959) Analysis of long-chain fatty acids by gas–liquid chromatography. Micromethod for the preparation of methyl esters. Anal Chem 31:307–308

    Article  CAS  Google Scholar 

  18. Bordoni A, Angeloni C, Leoncini E, Danesi F, Maranesi M, Biagi PL, Hrelia S (2005) Hypoxia/reoxygenation alters essential fatty acids metabolism in cultured rat cardiomyocytes: protection by antioxidants. Nutr Metab Cardiovasc Dis 15:166–173

    Article  PubMed  Google Scholar 

  19. Ofman R, el Mrabet L, Dacremont G, Spijer D, Wanders RJ (2002) Demonstration of dimethylnonanoyl-CoA thioesterase activity in rat liver peroxisomes followed by purification and molecular cloning of the thioesterase involved. Biochem Biophys Res Commun 290:629–634

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Takano H, Nagai T, Asakawa M, Toyozaki T, Oka T, Komuro I, Saito T, Masuda Y (2000) Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 87:596–602

    PubMed  CAS  Google Scholar 

  22. Planavila A, Rodriguez-Calvo R, Jove M, Michalik L, Wahli W, Laguna JC, Vazquez-Carrera M (2005) Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res 65:832–841

    Article  PubMed  CAS  Google Scholar 

  23. Cheng L, Ding G, Qin Q, Xiao Y, Woods D, Chen YE, Yang Q (2004) Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313:277–286

    Article  PubMed  CAS  Google Scholar 

  24. Burgermeister E, Seger R (2007) MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle 6:1539–1548

    PubMed  CAS  Google Scholar 

  25. Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R (2007) Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 27:803–817

    Article  PubMed  CAS  Google Scholar 

  26. Brochot A, Guinot M, Auchere D, Macaire JP, Weill P, Grynberg A, Rousseau-Ralliard D (2009) Effects of alpha-linolenic acid vs. docosahexaenoic acid supply on the distribution of fatty acids among the rat cardiac subcellular membranes after a short- or long-term dietary exposure. Nutr Metab 6:14

    Article  CAS  Google Scholar 

  27. Ek-Von Mentzer BA, Zhang F, Hamilton JA (2001) Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. Implications for transmembrane and intracellular transport and for protection from lipid peroxidation. J Biol Chem 276:15575–15580

    Article  PubMed  CAS  Google Scholar 

  28. Wolfrum C, Borchers T, Sacchettini JC, Spener F (2000) Binding of fatty acids and peroxisome proliferators to orthologous fatty acid binding proteins from human, murine, and bovine liver. Biochemistry 39:1469–1474

    Article  PubMed  CAS  Google Scholar 

  29. Lawrence JW, Kroll DJ, Eacho PI (2000) Ligand-dependent interaction of hepatic fatty acid-binding protein with the nucleus. J Lipid Res 41:1390–1401

    PubMed  CAS  Google Scholar 

  30. Huang H, Starodub O, McIntosh A, Kier AB, Schroeder F (2002) Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J Biol Chem 277:29139–29151

    Article  PubMed  CAS  Google Scholar 

  31. Huhtinen K, O’Byrne J, Lindquist PJ, Contreras JA, Alexson SE (2002) The peroxisome proliferator-induced cytosolic type I acyl-CoA thioesterase (CTE-I) is a serine–histidine–aspartic acid alpha/beta hydrolase. J Biol Chem 277:3424–3432

    Article  PubMed  CAS  Google Scholar 

  32. Murakami K, Ide T, Nakazawa T, Okazaki T, Mochizuki T, Kadowaki T (2001) Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to alpha and gamma isoforms of peroxisome-proliferator-activated receptors by competing with agonists. Biochem J 353:231–238

    Article  PubMed  CAS  Google Scholar 

  33. Elholm M, Dam I, Jorgensen C, Krogsdam AM, Holst D, Kratchmarova I, Gottlicher M, Gustafsson JA, Berge R, Flatmark T, Knudsen J, Mandrup S, Kristiansen K (2001) Acyl-CoA esters antagonize the effects of ligands on peroxisome proliferator-activated receptor alpha conformation, DNA binding, and interaction with Co-factors. J Biol Chem 276:21410–21416

    Article  PubMed  CAS  Google Scholar 

  34. Ramos KL, Colquhoun A (2001) Evidence for the involvement of polyunsaturated fatty acids in the regulation of long-chain acyl CoA thioesterases and peroxisome proliferation in rat carcinosarcoma. Cell Biochem Funct 19:1–9

    Article  PubMed  CAS  Google Scholar 

  35. Pawar A, Jump DB (2003) Unsaturated fatty acid regulation of peroxisome proliferator-activated receptor alpha activity in rat primary hepatocytes. J Biol Chem 278:35931–35939

    Article  PubMed  CAS  Google Scholar 

  36. Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416

    Article  PubMed  CAS  Google Scholar 

  37. Dongol B, Shah Y, Kim I, Gonzalez FJ, Hunt MC (2007) The acyl-CoA thioesterase I is regulated by PPARalpha and HNF4alpha via a distal response element in the promoter. J Lipid Res 48:1781–1791

    Article  PubMed  CAS  Google Scholar 

  38. Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, Wahli W, Noy N (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22:5114–5127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Granarolo S.p.A. (Bologna, Italy) and by Italian MIUR (RFO 2007). The authors thank Mrs. Fabiana Missiroli for her skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Bordoni.

About this article

Cite this article

Di Nunzio, M., Danesi, F. & Bordoni, A. n-3 PUFA as Regulators of Cardiac Gene Transcription: A New Link between PPAR Activation and Fatty Acid Composition. Lipids 44, 1073–1079 (2009). https://doi.org/10.1007/s11745-009-3362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3362-y

Keywords

Navigation