Skip to main content
Log in

Phospholipid, Oleic Acid Micelles and Dietary Olive Oil Influence the Lutein Absorption and Activity of Antioxidant Enzymes in Rats

  • Original Article
  • Published:
Lipids

Abstract

This study reports on the results of repeated gavages and dietary feeding of lutein dispersed either in phospholipids or fatty acid micelles or vegetable oils and the effects on lutein bioavailability and antioxidant enzymes in rats. For the gavage study, rats (n = 5/group) were intubated with lutein solubilized either in oleic acid (OLA, 18:1n-9) or linoleic acid (LNA, 18:2n-6) or phosphatidylcholine (PC) or lysophosphatidylcholine (LPC) or no phospholipid (NoPL) micelles for 10 days. For the dietary study, rats (n = 5/group) were fed a diet containing fenugreek leaf (lutein source), either with olive (OO) or sunflower (SFO) or groundnut (GNO, control) oil or l-α-lecithin (PL) for 4 weeks. The gavage study showed that the plasma, liver and eye lutein levels in OLA and LPC groups were higher by 23.9, 20.8 and 25.5% and 16.1, 28.5 and 14.0% than LNA and PC groups, respectively. The dietary study showed the plasma (35.0 and 43.5%) and eye (18.5 and 37.0%) lutein levels in OO were higher than SFO and GNO groups. The plasma and eye lutein levels in the PL group were higher by 20 and 31.3% than in the control. It is evident that OO and PL modulate lutein absorption, which in turn modulates antioxidant enzymes and fatty acids in plasma and tissues compared to SFO. Hence, selection of the fat source may be vital to enhancing the lutein bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GNO:

Groundnut oil

LNA:

Linoleic acid

LPC:

Lysophosphatidylcholine

MDA:

Malonaldehyde

OLA:

Oleic acid

OO:

Olive oil

PC:

Phosphatidylcholine

PL:

l-α-Lecithin

SFO:

Sunflower oil

SOD:

Superoxide dismutase

References

  1. Krinsky NI (2002) Possible biologic mechanisms for a protective role of xanthophylls. J Nutr 132:540S–542S

    PubMed  Google Scholar 

  2. Handelman GJ, Nightingale ZD, Liechtenstein AH, Schaefer EJ, Blumberg JB (1999) Lutein and zeaxanthin concentration in plasma after dietary supplementation with egg yolk. Am J Clin Nutr 70:247–251

    PubMed  CAS  Google Scholar 

  3. Herden E, Diaz V, Svanberg U (2002) Estimation of carotenoids accessibility from carrots determined by an in vitro digestion method. Eur J Clin Nutr 56:425–430

    Article  Google Scholar 

  4. Dimitrov NV, Meyer C, Ulrey DE, Chenoweth W, Michelakis A, Malone W, Boone C, Fink G (1988) Bioavailability of β-carotene in humans. Am J Clin Nutr 48:298–304

    PubMed  CAS  Google Scholar 

  5. Roodenberg AJC, Leenen R, Van het hof KH, Westsrate JA, Tijburg LBM (2000) Amount of fat in the diet affects bioavailability of lutein esters but not of β-carotene, and vitamin-E in humans. Am J Clin Nutr 71:1187–1193

    Google Scholar 

  6. Van het Hof KH, West CE, Weststrate JA, Hautvast JGA (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506

    PubMed  Google Scholar 

  7. Baskaran V, Sugawara T, Nagao A (2003) Phospholipids affect the intestinal absorption of carotenoids in mice. Lipids 38:705–711

    Article  PubMed  CAS  Google Scholar 

  8. Raju M, Lakshminarayana R, Krishnakantha TP, Baskaran V (2005) Influence of phospholipids on β-carotene absorption and conversion into vitamin A in rats. J Nutr Sci Vitaminol 51:216–222

    PubMed  CAS  Google Scholar 

  9. Sugawara T, Kushiro M, Zhang H, Nara E, Ono H, Nagao A (2001) Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells. J Nutr 131:2921–2927

    PubMed  CAS  Google Scholar 

  10. Hu X, Jandacek RJ, White WS (2000) Intestinal absorption of β-carotene ingested with a meal rich in sunflower oil or beef tallow: postprandial appearance in triacylglycerol-rich lipoproteins in women. Am J Clin Nutr 71:1170–1180

    PubMed  CAS  Google Scholar 

  11. Clark RM, Yao L, She L, Furr HC (2000) A comparison of lycopene and astaxanthin absorption from corn oil and olive oil emulsions. Lipids 37:803–806

    Article  Google Scholar 

  12. Lakshminarayana R, Raju M, Krishnakantha TP, Baskaran V (2006) Enhanced bioavailability of lutein by lyso-phosphatidylcholine in mixed micelles. Mol Cell Biochem 281:103–110

    Article  PubMed  CAS  Google Scholar 

  13. Lakshminarayana R, Raju M, Krishnakantha TP, Baskaran V (2007) Lutein and zeaxanthin in leafy greens and their bioavailability: olive oil influences the absorption of dietary lutein and its accumulation in adult rats. J Agric Food Chem 55:6395–6400

    Article  PubMed  CAS  Google Scholar 

  14. Report (1977) of the American Institute of Nutrition Ad. Hoc committee on standards for nutritional studies. J Nutr 170:1340–1348

    Google Scholar 

  15. Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    Article  PubMed  CAS  Google Scholar 

  16. Flohe L, Gunzler W (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  17. Owens CWI, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94:705–711

    PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein estimation with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi H (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  20. Folch J, Lee M, Sloane SGH (1957) A simple method for isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  21. Fletcher MJ (1968) A colorimetric method for estimating serum triacylglycerol. Clin Chem Acta 22:303–307

    Article  Google Scholar 

  22. Searcy RL, Bergquist LM (1960) A new color reaction for the quantification of serum cholesterol. Clin Chem Acta 5:192–196

    Article  CAS  Google Scholar 

  23. Stewart JCM (1980) Colorimetric estimation of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  PubMed  CAS  Google Scholar 

  24. Morrison MR, Smith M (1963) Preparation of fatty acids methyl esters and dimethyl acetyls from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    Google Scholar 

  25. Homan R, Hamlehle KL (1998) Phospholipase A2 relieves phosphatidylcholine inhibition of micellar cholesterol absorption and transport by human intestinal cell line Caco-2. J Lipid Res 39:1197–1209

    PubMed  CAS  Google Scholar 

  26. Borel P, Grolier P, Armand M, Partier A, Lafont H, Lairon D, Azais-Braesco V (1996) Carotenoids in biological emulsions: solubility, surface-to-core distribution and release from lipid droplets. J Lipid Res 37:250–261

    PubMed  CAS  Google Scholar 

  27. Hollander D, Ruble PE (1978) β-Carotene intestinal absorption: bile, fatty acids, pH and flow rate effects on transport. Am J Physiol 235:E686–E691

    PubMed  CAS  Google Scholar 

  28. Borel P, Tyssandier V, Mekki N, Grolier P, Rochette Y, Alexandre-Gouabau MC, Azais-Braesco V (1998) Chylomicron β-carotene and retinyl palmitate responses are dramatically diminished when men ingest β-carotene with medium-chain rather than long-chain triglycerides. J Nutr 128:1361–1367

    PubMed  CAS  Google Scholar 

  29. Odeberg JM, Lingnell A, Pettersson A, Hoglund P (2003) Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur J Pharm Sci 19:299–304

    Article  Google Scholar 

  30. Mataix J, Quiles JL, Huertas JR, Battino M, Manas M (1998) Tissue specific interactions of exercise, dietary fatty acids and vitamin-E in lipid peroxidation. Free Radic Biol Med 24:511–521

    Article  PubMed  CAS  Google Scholar 

  31. Ruiz-Gutierrez V, Perez-Espinosa A, Vazquez CM, Santa-Maria C (1999) Effect of dietary fats (fish, olive and high-oleic acid sunflower oils) on lipid composition and antioxidant enzymes in rat liver. Br J Nutr 82:233–241

    PubMed  CAS  Google Scholar 

  32. Cai J, Nelson KC, Wu M, Steinberg P Jr, Jones DP (2000) Oxidative damage and protection of the retinal pigment epithelium. Prog Ret Eye Res 19:205–221

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Director and Head, Department of Biochemistry and Nutrition, CFTRI for their encouragement. R. Lakshminarayana and M. Raju acknowledge the CSIR, New Delhi, India for the granting of Senior Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Baskaran.

About this article

Cite this article

Lakshminarayana, R., Raju, M., Keshava Prakash, M.N. et al. Phospholipid, Oleic Acid Micelles and Dietary Olive Oil Influence the Lutein Absorption and Activity of Antioxidant Enzymes in Rats. Lipids 44, 799–806 (2009). https://doi.org/10.1007/s11745-009-3328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3328-0

Keywords

Navigation