, Volume 44, Issue 5, pp 425–435 | Cite as

Lysophosphatidylcholine Exhibits Selective Cytotoxicity, Accompanied by ROS Formation, in RAW 264.7 Macrophages

  • Cheon Ho Park
  • Mee Ree Kim
  • Jong-Min Han
  • Tae-Sook Jeong
  • Dai-Eun Sok
Original Article


Lysophosphatidylcholine (lysoPtdCho) is a component of oxidized low density lipoprotein, and is involved in the pathogenesis of atherosclerosis and inflammation. We studied the effects of lysoPtdCho on cytotoxicity, reactive oxygen species (ROS) production, activation of the extracellular signal-regulated kinase (ERK), mitogen-activated protein kinases and pro-inflammatory gene expression in RAW 264.7 murine macrophage cells. When cells were exposed to lysoPtdCho with various acyl chains in a culture medium containing 10% fetal bovine serum, only 1-linoleoyl (C18:2) lysoPtdCho showed a remarkable cytotoxicity, reaching the highest level at 24 h, and elicited ROS production, suggesting that oxidative stress might be implicated in the cytotoxicity of 1-linoleoyl (C18:2) lysoPtdCho. Presumably in support of this, antioxidants such as magnolol or trolox prevented 1-linoleoyl (C18:2) lysoPtdCho-induced cytotoxicity as well as ROS production, although only partially. Furthermore, the phosphorylation of ERK 1/2 and the expression of pro-inflammatory cytokines such as IL-1β, CCL2 and CCL5 were augmented by 1-linoleoyl (C18:2) lysoPtdCho. Meanwhile, there was no structural importance of the acyl chain for the cytotoxic action of lysoPtdCho during 10 min incubation in serum-free media. Taken together, it is suggested that in a serum-containing medium, 1-linoleoyl (C18:2) lysoPtdCho can cause a significant cytotoxicity through ROS production, probably accompanied by activation of ERK and induction of related inflammatory cytokines, in RAW 264.7 cells.


Delayed cytotoxicity Lysophosphatidylcholine Macrophage Inflammation NADPH oxidase Atherosclerosis Cytokines Extracellular signal-regulated kinase Antioxidants 





Reactive oxygen species


Fetal bovine serum


3-(4,5-Dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide


Extracellular signal-regulated kinase


Chemotactic cytokines ligand



This work was financially supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-531-C00067), Korea.


  1. 1.
    Adibhatla Rao M, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 40:376–387CrossRefGoogle Scholar
  2. 2.
    Zalewski A, Macphee CH (2005) Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 25:923–931PubMedCrossRefGoogle Scholar
  3. 3.
    Daleau P (1999) Lysophosphatidylcholine, a metabolite which accumulates early in myocardium during ischemia, reduces gap junctional coupling in cardiac cells. J Mol Cell Cardiol 31:1391–1401PubMedCrossRefGoogle Scholar
  4. 4.
    Silliman CC, Clay KL, Thurman GW, Johnson CA, Ambruso DR (1994) Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil NADPH oxidase. J Lab Clin Med 124:684–694PubMedGoogle Scholar
  5. 5.
    Thumser AE, Voysey JE, Wilton DC (1994) The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin. Biochem J 301:801–806PubMedGoogle Scholar
  6. 6.
    Ojala PJ, Hermansson M, Tolvanen M, Polvenen K, Hirvonen T, Impola U, Jauhiainen M, Somerharju P, Parkkinen J (2006) Identification of alpha-1 acid glycoprotein as a lysophospholipid binding protein: a complementary role to albumin in the scavenging of lysophosphatidylcholine. Biochemistry 45:14021–14031PubMedCrossRefGoogle Scholar
  7. 7.
    Kugiyama K, Sakamoto T, Misumi I, Sugiyama S, Ohgushi M, Ogawa H, Horiguchi M, Yasue H (1993) Transferable lipids in oxidized low-density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells. Circ Res 73:335–343PubMedGoogle Scholar
  8. 8.
    Huang F, Subbaiah PV, Holian O, Zhang J, Johnson A, Gertzberg N, Lum H (2005) Lysophosphatidylcholine increases endothelial permeability: role of PKC and RhoA cross talk. Am J Physiol Lung Cell Mol Physiol 289:L176–L185PubMedCrossRefGoogle Scholar
  9. 9.
    Silliman CC, Elzi DJ, Ambruso DR, Musters RJ, Hamiel C, Harbeck RJ, Bjornsen AJ, Wyman TH, Kelher M, England KM, McLaughlin-Malaxecheberria N, Barnett CC, Aiboshi J, Bannerjee A (2003) Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. J Leukoc Biol 73:511–524PubMedCrossRefGoogle Scholar
  10. 10.
    Nishioka H, Horiuchi H, Arai H, Kita T (1998) Lysophosphatidylcholine generates superoxide anions through activation of phosphatidylinositol 3-kinase in human neutrophils. FEBS Lett 441:63–66PubMedCrossRefGoogle Scholar
  11. 11.
    Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142PubMedCrossRefGoogle Scholar
  12. 12.
    Yamakawa T, Eguchi S, Yamakawa Y, Motley ED, Numaguchi K, Utsunomiya H, Inagami T (1998) Lysophosphatidylcholine stimulates MAP kinase activity in rat vascular smooth muscle cells. Hypertension 31:258–263Google Scholar
  13. 13.
    Liu-Wu Y, Hurt-Camejo E, Wiklund O (1998) Lysophosphatidylcholine induces the production of IL-1beta by human monocytes. Atherosclerosis 137:351–357PubMedCrossRefGoogle Scholar
  14. 14.
    Quinn MT, Parthasarathy S, Steinberg D (1988) Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA 85:2805–2809PubMedCrossRefGoogle Scholar
  15. 15.
    Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730PubMedCrossRefGoogle Scholar
  16. 16.
    Ojala PJ, Hirvonen TE, Hermansson M, Somerharju P, Parkkinen J (2007) Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils. J Leukoc Biol 82:1501–1509PubMedCrossRefGoogle Scholar
  17. 17.
    Perez-Gilabert M, Veldink GA, Vliegenthart JF (1998) Oxidation of dilinoleoyl phosphatidylcholine by lipoxygenase 1 from soybeans. Arch Biochem Biophys 354:18–23PubMedCrossRefGoogle Scholar
  18. 18.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  19. 19.
    Oyama Y, Hayashi A, Ueha T, Meakawa K (1994) Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 635:113–117PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto T, Kobayashi T, Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14:3209–3220PubMedCrossRefGoogle Scholar
  21. 21.
    Takeshita S, Inoue N, Gao D, Rikitake Y, Kawashima S, Tawa R, Sakurai H, Yokoyama M (2000) Lysophosphatidylcholine enhances superoxide anions production via endothelial NADH/NADPH oxidase. J Atheroscler Thromb 7:238–246PubMedGoogle Scholar
  22. 22.
    Kume N, Cybulsky MI, Gimborne MJ (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90:1138–1144PubMedCrossRefGoogle Scholar
  23. 23.
    Croset M, Brossard N, Polette A, Lagarde M (2000) Characterization of plasma unsaturated lysophosphatidylcholine in human and rat. Biochem J 345:61–67PubMedCrossRefGoogle Scholar
  24. 24.
    Waring P (2005) Redox active calcium ion channels and cell death. Arch Biochem Biophys 434:33–42PubMedCrossRefGoogle Scholar
  25. 25.
    Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy MP, Kalyanaraman R, Darley-Usmar VM, Noguchi N (2006) Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. Am J Pathol 168:1737–1748PubMedCrossRefGoogle Scholar
  26. 26.
    Komatsu D, Kato M, Nakayama J, Miyagawa S, Kamata T (2008) NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene 102:1–9Google Scholar
  27. 27.
    Bergmann SR, Ferguson TB Jr, Sobel BE (1981) Effects of amphiphiles on erythrocytes, coronary arteries, and perfused hearts. Am J Physiol 240:H229–H237PubMedGoogle Scholar
  28. 28.
    Bierbaum TJ, Bouma SR, Huestis WH (1979) A mechanism of erythrocyte lysis by lysophosphatidylcholine. Biochim Biophys Acta 555:102–110PubMedCrossRefGoogle Scholar
  29. 29.
    Portman OW, Alexander M (1969) Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis. J Lipid Res 10:158–165PubMedGoogle Scholar
  30. 30.
    Kugiyama M, Kern SA, Morrisett JD, Roberts R, Henry PD (1990) Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 344:160–162PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou L, Shi M, Guo Z, Brisbon W, Hoover R, Yang H (2006) Different cytotoxic injuries induced by lysophosphatidylcholine and 7-ketocholesterol in mouse endothelial cells. Endothelium 13:213–226PubMedCrossRefGoogle Scholar
  32. 32.
    Li Z, Mintzer E, Bittman R (2004) The critical micelle concentrations of lysophosphatidic acid and sphingosylphosphorylcholine. Chem Phys Lipids 130:197–201PubMedCrossRefGoogle Scholar
  33. 33.
    Kim YL, Im YJ, Ha NC, Im DS (2007) Albumin inhibits cytotoxic activity of lysophosphatidylcholine by direct binding. Prostaglandins Other Lipid Mediat 83:130–138PubMedCrossRefGoogle Scholar
  34. 34.
    Weltzien HU, Arnold B, Reuther R (1977) Quantitative studies on lysolecithin-mediated hemolysis. Use of ether-deoxy lysolecithin analogs with varying aliphatic chain-lengths. Biochim Biophys Acta 466:411–421PubMedCrossRefGoogle Scholar
  35. 35.
    Okita M, Gaudette DC, Mills GB, Holub BJ (1997) Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine (lysoPC) in ovarian cancer patients. Int J Cancer 71:31–40PubMedCrossRefGoogle Scholar
  36. 36.
    Murugesan G, Sandhya Rani MR, Gerber CE, Mukhopadhyay C, Ransohoff RM, Chisolm GM, Kottke-Marchant K (2003) Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. J Mol Cell Cardiol 35:1375–1384PubMedCrossRefGoogle Scholar
  37. 37.
    Ozaki H, Ishii K, Arai H, Kume N, Kita T (1999) Lysophosphatidylcholine activates mitogen-activated protein kinases by a tyrosine kinase-dependent pathway in bovine aortic endothelial cells. Atherosclerosis 143:261–266PubMedCrossRefGoogle Scholar
  38. 38.
    Feuerstein GZ, Young PR (2000) Apoptosis in cardiac disease: stress and mitogen-activated signaling pathways. Cardiovasc Res 45:560–569PubMedCrossRefGoogle Scholar
  39. 39.
    Jing Q, Xin S-M, Zhang W-B, Wang P, Qin Y-W, Pei G (2000) Lysophosphatidylcholine activates p38 and p42/44 mitogen-activated protein kinases in monocytic THP-1 cells, but only p38 activation is involved in its stimulated chemotaxis. Circ Res 87:52–59PubMedGoogle Scholar

Copyright information

© AOCS 2009

Authors and Affiliations

  • Cheon Ho Park
    • 1
  • Mee Ree Kim
    • 2
  • Jong-Min Han
    • 3
  • Tae-Sook Jeong
    • 3
  • Dai-Eun Sok
    • 1
  1. 1.College of PharmacyChungnam National UniversityTaejonRepublic of Korea
  2. 2.Department of Food and NutritionChungnam National UniversityTaejonRepublic of Korea
  3. 3.National Research Laboratory of Lipid Metabolism and AtherosclerosisKRIBBTaejonRepublic of Korea

Personalised recommendations