Skip to main content

Advertisement

Log in

Visualization of Bile Homeostasis Using 1H-NMR Spectroscopy as a Route for Assessing Liver Cancer

  • Original Article
  • Published:
Lipids

Abstract

Changes in bile synthesis by the liver or alterations in the enterohepatic circulation due to a variety of etiological conditions may represent a novel source of liver disease-specific biomarkers. Bile from patients with liver diseases exhibited significant changes in the levels of glycine- and taurine-conjugated bile acids, phospholipids, cholesterol and urea relative to non-liver disease controls. Cholangiocarcinoma and non-malignant liver diseases (NMLD) showed the most significant alterations. Further, hepatocellular carcinoma (HCC) could be differentiated from NMLD (p = 0.02), as well as non-liver disease controls (p = 0.02) based on the amounts of bile acids, phospholipids and/or cholesterol. HCC also differed with cholangiocarcinoma although not significantly. Urea increases somewhat in non-malignant liver disease relative to non-liver disease controls, while the bile acids, phospholipids and cholesterol all decrease significantly. The ratio between some major bile metabolites also distinguished NMLD (p = 0.004–0.01) from non-liver disease controls. This snapshot view of bile homeostasis, is obtainable from a simple nuclear magnetic resonance (NMR) approach and demonstrates the enormous opportunity to assess liver status, explore biomarkers for high risk diseases such as cancers and improve the understanding of normal and abnormal cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blonski W, Reddy KR (2008) Hepatitis C virus infection and hepatocellular carcinoma. Clin Liver Dis 12(3):661–674

    Article  PubMed  Google Scholar 

  2. Nagana Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8(5):617–633

    Article  Google Scholar 

  3. Pan Z, Raftery D (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387(2):525–527

    Article  PubMed  CAS  Google Scholar 

  4. van der Greef J, Smilde AK (2005) Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemometr 19(5–7):376–386

    Article  CAS  Google Scholar 

  5. Pan Z, Gu H, Talaty N, Chen H, Shanaiah N, Hainline BE, Cooks RG, Raftery D (2007) Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal Bioanal Chem 387:539–549

    Article  PubMed  CAS  Google Scholar 

  6. Chen H, Pan Z, Talaty N, Raftery D, Cooks RG (2006) Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun Mass Spectrom 20:1577–1584

    Article  PubMed  CAS  Google Scholar 

  7. Beger RD, Schnackenberg LK, Holland RD, Li D, Dragan Y (2006) Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics 2(3):125–134

    Article  CAS  Google Scholar 

  8. Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer JL (2005) Detection of epithelial ovarian cancer using H-1-NMR-based metabonomics. Int J Cancer 113(5):782–788

    Article  PubMed  CAS  Google Scholar 

  9. Burns MA, He W, Wu CL, Cheng LL (2004) Quantitative pathology in tissue MR spectroscopy based human prostate metabolomics. Technol Cancer Res Treat 3(6):591–598

    PubMed  Google Scholar 

  10. Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, Tang H, Deng F (2007) Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteom Res 6:2605–2614

    Article  CAS  Google Scholar 

  11. Vilca Melendez H, Gilani SS, Cochrane BC, Rela M, Murphy GM, Heaton ND (1998) A validated technique for the analysis of biliary bile acid secretion in donor livers prior to transplantation. Transpl Int 11(3):216–222

    Article  PubMed  CAS  Google Scholar 

  12. Cox IJ, Sharif A, Cobbold JF, Thomas HC, Taylor-Robinson SD (2006) Current and future applications of in vitro magnetic resonance spectroscopy in hepatobiliary disease. World J Gastroenterol 12(30):4773–4783

    PubMed  CAS  Google Scholar 

  13. Kurumiya Y, Nagino M, Nozawa K, Kamiya J, Uesaka K, Sano T, Yoshida S, Nimura Y (2003) Biliary bile acid concentration is a simple and reliable indicator for liver function after hepatobiliary resection for biliary cancer. Surgery 133(5):512–520

    Article  PubMed  Google Scholar 

  14. Khan SA, Cox IJ, Thillainayagam AV, Bansi DS, Thomas HC, Taylor-Robinson SD (2005) Proton and phosphorus-31 nuclear magnetic resonance spectroscopy of human bile in hepatopancreaticobiliary cancer. Eur J Gastroenterol Hepatol 17(7):733–738

    Article  PubMed  CAS  Google Scholar 

  15. Shima T, Tada H, Morimoto M, Nakagawa Y, Obata H, Sasaki T, Park H, Nakajo S, Nakashima T, Okanoue T, Kashima K (2000) Serum total bile acid level as a sensitive indicator of hepatic histological improvement in chronic hepatitis C patients responding to interferon treatment. J Gastroenterol Hepatol 15(3):294–299

    Article  PubMed  CAS  Google Scholar 

  16. El-Houseini ME, Amer MA, Saad Eldin AH, El-sherbiny M, Hussein TD, Mansour O (2000) Evaluation of serum total bile acids in the diagnosis of hepatocellular carcinoma. J Egyptian Nat Cancer Inst 12(4):307–313

    Google Scholar 

  17. Azer SA, Coverdale SA, Byth K, Farrell GC, Stacey NH (1996) Sequential changes in serum levels of individual bile acids in patients with chronic cholestatic liver disease. J Gastroenterol Hepatol 11(3):208–215

    Article  PubMed  CAS  Google Scholar 

  18. Jönsson G, Hedenborg G, Wisén O, Norman A (1992) Serum concentrations and excretion of bile acids in cirrhosis. Scand J Clin Lab Invest 52(7):599–605

    Article  PubMed  Google Scholar 

  19. Samuelson K, Aly A, Johansson C, Norman A (1982) Serum and urinary bile acids in patients with primary biliary cirrhosis. Scand J Gastroenterol 17(1):121–128

    Article  PubMed  CAS  Google Scholar 

  20. Fausa O, Gjone E (1976) Serum bile acid concentrations in patients with liver disease. Scand J Gastroenterol 11(5):537–543

    PubMed  CAS  Google Scholar 

  21. Prescot AP, Collins DJ, Leach MO, Dzik-Jurasz AS (2003) Human gallbladder bile: noninvasive investigation in vivo with single-voxel 1H MR spectroscopy. Radiology 229(2):587–592

    Article  PubMed  Google Scholar 

  22. Künnecke B, Bruns A, von Kienlin M (2007) Non-invasive analysis of gallbladder bile composition in cynomolgus monkeys using in vivo 1H magnetic resonance spectroscopy. Biochim Biophys Acta 1771(4):544–549

    PubMed  Google Scholar 

  23. Nagana Gowda GA, Ijare OB, Somashekar BS, Sharma A, Kapoor VK, Khetrapal CL (2006) Single step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids 41:591–603

    Article  Google Scholar 

  24. Nagana Gowda GA, Somashekar BS, Ijare OB, Sharma A, Kapoor VK, Khetrapal CL (2006) One step analysis of major bile metabolites in human bile using 1H NMR spectroscopy. Lipids 41:577–589

    Article  Google Scholar 

  25. Ijare OB, Somashekar BS, Jadegoud Y, Nagana Gowda GA (2005) 1H and 13C NMR characterization and stereochemical assignments of bile acids in aqueous media. Lipids 40:1031–1041

    Article  PubMed  CAS  Google Scholar 

  26. Ijare OB, Somashekar BS, Nagana Gowda GA, Sharma A, Kapoor VK, Khetrapal CL (2005) Quantification of glycine and taurine conjugated bile acids in human bile using 1H NMR spectroscopy. Magn Reson Med 53(6):1441–1446

    Article  PubMed  CAS  Google Scholar 

  27. Srivastava M, Jadegoud Y, Nagana Gowda GA, Sharma A, Kapoor VK, Khetrapal CL (2005) An accurate method for cholesterol analysis in bile. Anal Lett 38:2135–2141

    Article  CAS  Google Scholar 

  28. Singh HK, Yachha SK, Saxena R, Gupta A, Nagana Gowda GA, Bhandari M, Khetrapal CL (2003) Dimension of 1H NMR spectroscopy in assessment of liver graft dysfunction. NMR Biomed 16:185–188

    Article  PubMed  CAS  Google Scholar 

  29. Noël-Paton D (1886) Nature of the relationship of urea formation to bile secretion. J Anat Physiol 20(4):662–673

    PubMed  Google Scholar 

  30. Griffiths WJ (2003) Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev 22(2):81–152

    Article  PubMed  CAS  Google Scholar 

  31. Yang Y, Griffiths WJ, Nazer H, Sjovall J (1997) Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography-mass spectrometry using fast ion atom bombardment or electrospray ionization and collision induced dissociation. Biomed Chromatogr 11:240–255

    Article  PubMed  CAS  Google Scholar 

  32. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH Roadmap Initiative on Metabolomics Technology, NIH/NIDDK 3 R21 DK070290-01; the Walther Cancer Institute Multi-Institution Cancer Research Seed Project, the Purdue Oncological and Cancer Centers, and a collaborative research grant between Purdue University/Discovery Park and the Indiana University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Nagana Gowda or Mary Maluccio.

About this article

Cite this article

Nagana Gowda, G.A., Shanaiah, N., Cooper, A. et al. Visualization of Bile Homeostasis Using 1H-NMR Spectroscopy as a Route for Assessing Liver Cancer. Lipids 44, 27–35 (2009). https://doi.org/10.1007/s11745-008-3254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3254-6

Keywords

Navigation