Lipids

, Volume 44, Issue 1, pp 17–26

Influence of Interesterification of a Stearic Acid-Rich Spreadable Fat on Acute Metabolic Risk Factors

  • Dawn M. Robinson
  • Natalie C. Martin
  • Lindsay E. Robinson
  • Latifeh Ahmadi
  • Alejandro G. Marangoni
  • Amanda J. Wright
Original Article

Abstract

Chemical and enzymatic interesterification are used to create spreadable fats. However, a comparison between the two processes in terms of their acute metabolic effects has not yet been investigated. A randomised crossover study in obese (plasma TAG > 1.69 mmol/L, and BMI > 30 (BMI = kg/m2) or waist circumference > 102 cm, n = 11, age = 59.3 ± 1.8 years) and non-obese (plasma triacylglycerol (TAG) < 1.69 mmol/L, and BMI < 30  or waist circumference < 102 cm, n = 10, age = 55.8 ± 2.2 years) men was undertaken to compare the effects of chemical versus enzymatic interesterification on postprandial risk factors for type 2 diabetes (T2D) and cardiovascular disease (CVD). TAG, cholesterol, glucose, insulin and free fatty acid concentrations were measured for 6 h following consumption of 1 g fat/kg body mass of non-interesterified (NIE), chemically interesterified (CIE), enzymatically interesterified (EIE) stearic acid-rich fat spread or no fat, each with 50 g available carbohydrate from white bread. Interesterification did not affect postprandial glucose, insulin, free fatty acids or cholesterol (P > 0.05). Following ingestion of NIE, increases in serum oleic acid were observed, whereas both oleic and stearic acids were increased with CIE and EIE (P < 0.05). While postprandial TAG concentrations in non-obese subjects were not affected by fat treatment (P > 0.05), obese subjects had an 85% increase in TAGs with CIE versus NIE (P < 0.05). The differences in TAG response between non-obese and obese subjects suggest that interesterification may affect healthy individuals differently compared to those already at risk for T2D and/or CVD.

Keywords

Stearic acid Spreadable fat Chemical interesterification Enzymatic interesterification Randomisation Postprandial Triacylglycerol metabolism 

Abbreviations

AUC

Area under the curve

BMI

Body mass index

CIE

Chemically interesterified test fat

CVD

Cardiovascular disease

DAG

Diacylglycerol

EIE

Enzymatically interesterified test fat

GC

Gas chromatography

HOMA-IR

Homeostasis model of insulin resistance

HPLC

High performance liquid chromatography

IE

Interesterification

NIE

Non-interesterified test fat

SEM

Standard error of the mean

SSS

Tristearin

T2D

Type 2 diabetes

TAG

Triacylglycerol

References

  1. 1.
    List GR, Pelloso T, Orthoefer F, Chrysam M, Mounts TL (1995) Preparation and properties of zero trans soybean oil margarines. J Am Oil Chem Soc 72:383–384CrossRefGoogle Scholar
  2. 2.
    Upritcharda JE, Zeelenberga MJ, Huizingaa H, Verschurena PM, Trautweina EA (2005) Modern fat technology: what is the potential for heart health? Proc Nutr Soc 64:379–386CrossRefGoogle Scholar
  3. 3.
    Sreenivasan B (1978) Interesterification of fats. J Am Oil Chem Soc 55:796–805CrossRefGoogle Scholar
  4. 4.
    Grundy S (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60:986S–990SPubMedGoogle Scholar
  5. 5.
    Sundram K, Karupaiah T, and Hayes K (2007) Stearic acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans. Nutr Metab (serial online) 4: July 5 2007. URL: http://www.nutritionandmetabolism.com/content/4/1/3
  6. 6.
    Mattson FH, Volpenhein RA (1964) The digestion and absorption of triglycerides. J Biol Chem 239:2772–2777PubMedGoogle Scholar
  7. 7.
    Renaud SC, Ruf JC, Petithory D (1995) The positional distribution of fatty acids in palm oil and lard influences their biologic effects in rats. J Nutr 125:229–237PubMedGoogle Scholar
  8. 8.
    Mortimer B, Kenrick MA, Holthouse DJ, Stick RV, Redgrave TG (1992) Plasma clearance of model lipoproteins containing saturated and polyunsaturated monoacylglycerols injected intravenously in the rat. Biochem Biophys Acta 1127:67–73PubMedGoogle Scholar
  9. 9.
    De Fouw NJ, Kivits GAA, Quinlan PT, van Nielen WG, Wim GL (1994) Absorption of isomeric, palmitic acid-containing triacylglycerols resembling human milk fat in the adult rat. Lipids 29:765–770PubMedCrossRefGoogle Scholar
  10. 10.
    Redgrave TG, Kodali DR, Small DM (1998) The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat. J Biol Chem 263:5118–5123Google Scholar
  11. 11.
    Mortimer BC, Simmonds WJ, Joll CA, Stick RV, Redgrave TG (1988) Regulation of the metabolism of lipid emulsion model lipoproteins by a saturated acyl chain at the 2-position of triacylglycerol. J Lipid Res 29:713–720PubMedGoogle Scholar
  12. 12.
    Aoe S, Yamamura J, Matsuyama H, Hase M, Shiota M, Miura S (1997) The positional distribution of dioleoyl–palmitoyl glycerol influences lymph chylomicron transport, composition and size in rats. J Nutr 127:1269–1273PubMedGoogle Scholar
  13. 13.
    Brink EJ, Haddeman E (1995) Positional distribution of stearic acid and oleic acid in a triacylglycerol and dietary calcium concentration determines the apparent absorption of these fatty acids in rats. J Nutr 125:2379–2387PubMedGoogle Scholar
  14. 14.
    Mattson FH, Nolen GA, Webb MR (1979) The absorbability by rats of various triglycerides of stearic and oleic acid and the effect of dietary calcium and magnesium. J Nutr 109:1682PubMedGoogle Scholar
  15. 15.
    Zilversmit D (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485PubMedGoogle Scholar
  16. 16.
    Karpe F (1997) Postprandial lipid metabolism in relation to coronary heart disease. Proc Nutr Soc 56:671–678PubMedCrossRefGoogle Scholar
  17. 17.
    Ceriello A, Davidson J, Hanefeld M, Leiterd M, Monniere L, Owens D, Tajima N, Tuomilehto J (2006) Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16:453–456PubMedCrossRefGoogle Scholar
  18. 18.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285:2486–2497CrossRefGoogle Scholar
  19. 19.
    Kolovou GD, Anagnostopoulou KK, Pavlides AN, Salpea K, Iraklianou A, Tsarpalis K, Damaskos DS, Manolis A, Cokkinos DV (2005) Postprandial lipemia in men with metabolic syndrome, hypertensives and healthy subjects. Lipids Health Dis 4:21–29PubMedCrossRefGoogle Scholar
  20. 20.
    Blackburn P, Lamarche B, Couillard C, Pascot A, Bergeroc N, Prud’homme D, Tremblay A, Bergeron J, Lemieux I, Despres JP (2003) Postprandial hyperlipidemia: another correlate of the “hypertriglyceridemic waist” phenotype in men. Atherosclerosis 171:327–336PubMedCrossRefGoogle Scholar
  21. 21.
    Matthews DR (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  22. 22.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  23. 23.
    National Institute of Health (1998) Clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults. Obes Res 6:51S–209SGoogle Scholar
  24. 24.
    Bergstedt SE, Hayashi H, Kritchevsky D, Tso P (1990) Comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine. Am J Physiol Gastrointest Liver Physiol 9:G386–G393Google Scholar
  25. 25.
    Livesey G (2000) The absorption of stearic acid from triacylglycerols: an inquiry and analysis. Nutr Res Rev 13:185–214CrossRefGoogle Scholar
  26. 26.
    Summers LKM, Fielding BA, Herd SL, Ilic V, Clark ML, Quinlan PT, Frayn KN (1999) Use of structured triacylglycerols containing predominantly stearic and oleic acids to probe early events in metabolic processing of dietary fat. J Lipid Res 40:1890–1898PubMedGoogle Scholar
  27. 27.
    Yli-Jokipii KM, Schwab US, Tahvonen RL, Kurvinen J, Mykkanen HM, Kallio HPT (2002) Triacylglycerol molecular weight and to a lesser extent, fatty acid positional distribution, affect chylomicron triacylglycerol composition in women. J Nutr 132:924–929PubMedGoogle Scholar
  28. 28.
    Summers LKM, Fielding BA, Ilic V, Quinlan PT, Frayn KN (1998) The effect of triacylglycerol-fatty acid positional distribution on postprandial metabolism in subcutaneous adipose tissue. Br J Nutr 79:141–147PubMedCrossRefGoogle Scholar
  29. 29.
    Yli-Jokipii K, Schwab US, Tahvonen RL, Kurvinen J, Mykkanen HM, Kallio HPT (2003) Chylomicron and VLDL TAG structures and postprandial lipid response induced by lard and modified lard. Lipids 38:693–703PubMedCrossRefGoogle Scholar
  30. 30.
    Berry SE, Miller GJ, Sanders TA (2007) The solid fat content of stearic acid-rich fats determines their postprandial effects. Am J Clin Nutr 85:1486–1494PubMedGoogle Scholar
  31. 31.
    Taguchi H, Watanabe H, Onizawa K, Nagao T, Gotoh N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H (2000) Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J Am Coll Nutr 19:789–796PubMedGoogle Scholar
  32. 32.
    Zampelas A, Williams CM, Morgan LM, Wright J, Quinlan PT (1994) The effect of triacylglycerol fatty acid positional distribution on postprandial plasma metabolite and hormone responses in normal adult men. Br J Nutr 71:401–410PubMedCrossRefGoogle Scholar
  33. 33.
    Cohen JC, Berger GM (1990) Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res 31:597–602PubMedGoogle Scholar
  34. 34.
    Collier G, O’Dea K (1983) The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. Am J Clin Nutr 37:941–944PubMedGoogle Scholar
  35. 35.
    Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger B, Knapp E, Dunn JK, Gotto AM Jr, Patsch W (1992) Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb Vasc Biol 12:1336–1345Google Scholar
  36. 36.
    Leiter LA, Ceriello A, Davidson JA, Hanefeld M, Monnier L, Owens DR, Tajima N, Tuomilehto J (2005) Postprandial glucose regulation: new data and new implications. Clin Ther 27:S42–S56PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2008

Authors and Affiliations

  • Dawn M. Robinson
    • 1
  • Natalie C. Martin
    • 1
  • Lindsay E. Robinson
    • 1
  • Latifeh Ahmadi
    • 2
  • Alejandro G. Marangoni
    • 2
  • Amanda J. Wright
    • 1
  1. 1.Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphCanada
  2. 2.Department of Food Science, Ontario Agricultural CollegeUniversity of GuelphGuelphCanada

Personalised recommendations