Skip to main content
Log in

Two Novel Ceramides with a Phytosphingolipid and a Tertiary Amide Structure from Zephyranthes candida

  • Original Article
  • Published:
Lipids

Abstract

Two novel ceramides, Candidamide A (1) with a phytosphingolipid structure, and Candidamide B (2) with a tertiary amide structure, together with 12 known compounds (3–14) have been isolated from the bulbs of Zephyranthes candida, The structures of 1 and 2 have been elucidated to be 1,3,5,6-tetrahydroxy-2-(2′-hydroxytetracosanoyl amino)-8-(E)-octadecadiene (1) and (2S,3S,4R,8E,2′R)-2-[N-(2′-hydroxyoctadecanoyl)-N-(1′′,2′′-dihydroxyethyl)-amino]-8-hexacosene-1,3,4-triol (2) on the basis of spectroscopic evidence including IR, MS, NMR (1H-NMR, 13C-NMR, DEPT, 1H–1H COSY, HSQC, HMBC). The known compounds were identified as (2S)-3′,7-dihydroxy-4′-methoxyflavan (3), (2S)-4′-hydroxy-7-methoxyflavan (4), (2S)-4′,7-dihydroxyflavan (5), 7-hydroxy-3′, 4′-methylenedioxyflavan (6), ambrettolide (7), β-sitostero1 (8), β-daucosterin (9), rutin (10), pancratistatin (11), lycorine (12), haemanthidine (13), and haemanthamine (14). In the antimicrobial assay, candidamide A (1) and candidamide B (2) displayed moderate activities against bacteria Staphylococcus aureus and Escherichia coli, and fungi Aspergillus niger, Candida albicans and Trichophyton rubrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

Abbreviations

CC:

Column chromatography

COSY:

Correlation spectroscopy

DEPT:

Distortionless enhancement by polarization transfer

HMBC:

Heteronuclear multiple bond correlation

HSQC:

Heteronuclear single quantum correlation

HR:

High resolution

LCB:

Long chain base

FA:

Fatty acid

MICs:

Minimum inhibitory concentrations

References

  1. Thoibi DT, Borua PK (1997) Meiotic behaviour and pollen fertility in three species of Zephyranthes (Amaryllidaceae). Biol Plant 39:355–360

    Article  Google Scholar 

  2. Pettit GR, Gaddamidi V, Cragg GM (1984) Antineoplastic agents, 105. Zephyranthes grandiflora. J Nat Prod 47:1018–1020

    Article  PubMed  CAS  Google Scholar 

  3. Ghosal S, Singh SK, Srivastava RS (1986) Alkaloids of Zephyranthes flava. Phytochemistry 25:1975–1978

    Article  CAS  Google Scholar 

  4. Ghosal S, Singh SK, Srivastava RS (1985) Flavans from Zephyranthes flava. Phytochemistry 24:151–153

    Article  Google Scholar 

  5. Ghosal S, Singh SK, Unnikrishnan G (1987) Chemical constituents of Amaryllidaceae. Part 25. Phosphatidylpyrrolophenanthridine alkaloids from Zephyranthes flava. Phytochemistry 26:823–828

    Article  CAS  Google Scholar 

  6. Zaida TA, Myrna CR, Iraida SS (1989) Preliminary study of Zephyranthes eggersiana Urban. Revista Cubana de Farmacia 23:147–150

    Google Scholar 

  7. Iraida SS, Zaida TA (1989) Determination of the presence of lactams in the plant Zephyranthes tubispatha Herb, Amaryllidaceae. Revista Cubana de Farmacia 23(1–2):151–154

    Google Scholar 

  8. Kojima K, Mutsuga M, Inoue M, Ogihara Y (1998) Two alkaloids from Zephyranthes carinata. Phytochemistry 48:1199–1202

    Article  CAS  Google Scholar 

  9. Mutsuga M, Kojima K, Nose M, Inoue M, Ogihara Y (2001) Cytotoxic activities of alkaloids from Zephyranthes carinata. Nat Med 55:201–204

    CAS  Google Scholar 

  10. Herrera MR, Machocho AK, Brun R, Viladomat F, Codina C, Bastida J (2001) Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med 67:191–193

    Article  PubMed  CAS  Google Scholar 

  11. Mitsuru N, Tokunaru H, Masao T, Mitsuo M, Shuichi H (1978) Isolation of kaempferol-3-O-rhamnoglucoside, a flavonoid glycoside from Zephyranthes candida. J Biosci 33C:587–588

    Google Scholar 

  12. Ozeki S (1964) Alkaloids of Zephyranthes candida. I. Isolation of bases. Yakugaku Zasshi. 84:1194–1197

    PubMed  CAS  Google Scholar 

  13. Pettit GR, Cragg GM, Singh SB, Duke JA, Doubek DL (1990) Antineoplastic agents, 162. Zephyranthes candida. J Nat Prod 53:176–178

    Article  PubMed  CAS  Google Scholar 

  14. Li X, Sun DD, Chen JW, He LW, Zhang HQ, Xu HQ (2007) New sphingolipids from the root of Isatis indigotica and their cytotoxic activity. Fitoterapia 78:490–495

    Article  PubMed  CAS  Google Scholar 

  15. Li HY, Matsunaga S, Fusetani N (1995) Halicylindrosides, antifungal and cytotoxic cerebrosides from the marine sponge Halichondria cylindroata. Tetrahedron 51:2273–2280

    Article  CAS  Google Scholar 

  16. Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG (2007) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764

    Article  PubMed  CAS  Google Scholar 

  17. Chen JH, Cui GY, Liu JY, Tan RX (2003) Pinelloside, an antimicrobial cerebroside from Pinellia ternata. Phytochemistry 64:903–906

    Article  PubMed  CAS  Google Scholar 

  18. Cateni F, Zilic J, Falsone G, Scialino G, Banfi E (2003) New cerebrosides from Euphorbia peplis L.: antimicrobial activity evaluation. Bioorg Med Chem Lett 13:4345–4350

    Article  PubMed  CAS  Google Scholar 

  19. Mishra PK, Singh N, Ahmad G, Dube A, Maurya R (2005) Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorg Med Chem Lett 15:4543–4546

    Article  PubMed  CAS  Google Scholar 

  20. Cateni F, Zilic J, Falsone G, Hollan F, Frausin F, Scarcia V (2003) Preliminary biological assay on cerebroside mixture from Euphorbia nicaeensis All. Isolation and structure determination of five glucocerebrosides. IL Farmaco 58:809–817

    Article  PubMed  CAS  Google Scholar 

  21. Natori T, Morita M, Akimoto K, Koezuka Y (1994) Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50:2771–2784

    Article  CAS  Google Scholar 

  22. Gao JM, Yang X, Wang CY, Liu JK (2001) Armillaramide, a new sphingolipid from the fungus Armillaria mellea. Fitoterapia 72:857–972

    Article  Google Scholar 

  23. Higuchi R, Inagaki M, Togawa K, Miyamoto T, Komori T (1994) Isolation and structure of cerebrosides from the sea cucumber Pentacta australis. Liebigs Ann Chem 7:653–658

    Article  Google Scholar 

  24. Ouyang MA, Liu R, Kuo YH (2005) A new cerebrosides, asperiamide A, from the marine fungus Asperillus sp. J Asian Nat Prod Res 7:761–765

    Article  PubMed  CAS  Google Scholar 

  25. Simo CCF, Kouam SF, Poumale HMP, Simo IK, Ngadjui BT, Green IR, Krohn K (2008) Benjaminamide: a new ceramide and other compounds from the twigs of Ficus benjamina (Moraceae). Biochem Syst Ecol 36:238–243

    Article  CAS  Google Scholar 

  26. Chen XS, Wu YL, Chen DH (2002) Structure determination and synthesis of a new cerebrosides isolation from the traditional Chinese medicine Typhonium giganteum Engl. Tetrahedron Lett 43:3529–3532

    Article  CAS  Google Scholar 

  27. Kumar N, Singh B, Gupta AP, Kaul VK (2006) Lonijaposides, novel cerebrosides from Lonicer japonica. Tetrahedron 62:4317–4322

    Article  CAS  Google Scholar 

  28. Chen XS, Chen DH, Si JY, Guang ZT (2001) Chemical constituents of Typhonium giganteum Engl. J Asian Nat Prod Res 3:277–283

    Article  PubMed  CAS  Google Scholar 

  29. Su BN, Takaishi Y (1999) Morinins H-K, four novel phenylpropanol ester lipid metabolites from Morina chinensis. J Nat Prod 62:1325–1327

    Article  PubMed  CAS  Google Scholar 

  30. Shibuya H, Kawashima K, Sakagami M, Kawanishi H, Shimomura M, Ohashi K, Kitagawa I (1990) Sphingolipids and glycerolipids.I. Chemical structure and ionophoretic activities of soyacerebrosides I and II from soybean. Chem Pharm Bull 38:2933–2938

    PubMed  CAS  Google Scholar 

  31. Liu A, Zou ZM, Xu LZ, Yang SL (2005) A new cerebroside from Uvaria tonkinensis var. subglabra. J Asian Nat Prod Res 7:861–865

    Article  PubMed  CAS  Google Scholar 

  32. Oueslati MH, Mighri Z, Jannet HB, Abreu PM (2005) New ceramides from Rantherium suaveolens. Lipids 40:1075–1079

    Article  PubMed  CAS  Google Scholar 

  33. Lin YP, Yan J, Qiu MH (2006) Novel imine from Hemsleya macrocarpa var. clavata. Lipids 41:97–99

    Article  PubMed  CAS  Google Scholar 

  34. Masaoud M, Ripperger H, Porzel A (1995) Flavonoids of dragon’s blood from Dracaena cinnabari. Phytochemistry 38:745–749

    Article  CAS  Google Scholar 

  35. Achenbach H, Stocker M, Manael AC (1988) Flavonoid and other constituents of Bauhinia manca. Phytochemistry 27:1835–1842

    Article  CAS  Google Scholar 

  36. San V, Seoan E (1982) Synthesis of ambrettolide from phloionolic acid. Perkin Trans I 7:1837–1838

    Google Scholar 

  37. Likhitwitayawuid K, Angerhofer CK, Chai H, Pezzuto JM, Cordell GA (1993) Cytotoxic and antimalarial alkaloids from the bulbs of Crinum amabile. J Nat Prod 8:1331–1338

    Article  Google Scholar 

  38. Kihara M, Konishi K, Xu L, Kobayashi S (1991) Alkaloidal constituents of the flowers of Lycoris radiata Herb (Amaryllidaceae). Chem Pharm Bull 39:1849–1853

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by the Natural Science Foundation of Jiangsu Province (BK2004062). The authors wish to acknowledge Professor Y.-L. Wu at State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai China, for making suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Feng.

About this article

Cite this article

Wu, Zp., Chen, Y., Xia, B. et al. Two Novel Ceramides with a Phytosphingolipid and a Tertiary Amide Structure from Zephyranthes candida . Lipids 44, 63–70 (2009). https://doi.org/10.1007/s11745-008-3246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3246-6

Keywords

Navigation