Skip to main content
Log in

An Improved Method for Separating Cardiolipin by HPLC

  • Original Article
  • Published:
Lipids

Abstract

Herein we report an improved method to separate cardiolipin (Ptd2Gro) from tissue total lipid extracts using a biphasic solvent system combined with high performance liquid chromatography. This method uses a normal phase silica column and two mobile phases: mobile phase A that was n-hexane:2-propanol (3:2 by vol) and mobile phase B that was n-hexane:2-propanol:water (56.7:37.8:5.5 by vol). The initial solvent conditions were 95% A and 5% B, with a flow rate of 1.5 mL/min. The samples were from non-derivatized aliquots of liver, heart, or brain lipid extracts. The peak corresponding to Ptd2Gro appeared at 31 min, was well defined and did not overlap with neighboring peaks. The adjacent peak corresponded to ethanolamine glycerophospholipids and the remaining phospholipids were eluted in a single peak. The identity of the phospholipids separated by this method was verified by thin layer chromatography (TLC) and fatty acid analysis, which confirmed that the Ptd2Gro was well resolved from other phospholipids. This method is useful to separate and quantify Ptd2Gro from small tissue samples thereby avoiding the variability associated with TLC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

DHA:

Docosahexaenoic acid

EtnGpl:

Ethanolamine glycerophospholipids

FAME:

Fatty acid methyl esters

GLC:

Gas liquid chromatography

HPLC:

High performance liquid chromatography

TLC:

Thin layer chromatography

Ptd2Gro:

Cardiolipin

References

  1. de Kroon A, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325:108–116

    Article  PubMed  Google Scholar 

  2. Barcelo-Coblijn G, Collison LW, Jolly CA, Murphy EJ (2005) Dietary alpha-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels. Lipids 40:787–798

    Article  PubMed  CAS  Google Scholar 

  3. Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265:18797–18802

    PubMed  CAS  Google Scholar 

  4. Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021:217–226

    Article  PubMed  CAS  Google Scholar 

  5. Nicolay K, de Kruijff B (1987) Effects of Adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV. Biochim Biophys Acta 892:320–330

    Article  PubMed  CAS  Google Scholar 

  6. Paradies G, Ruggiero FM, Gadaleta MN, Quagliariello E (1992) The effect of aging and acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria. Biochim Biophys Acta 1103:324–326

    Article  PubMed  CAS  Google Scholar 

  7. Paradies G, Ruggiero FM, Petrosillo G, Gadaleta MN, Quagliariello E (1994) The effect of aging and acetyl-L-carnitine on the function and on the lipid composition of rat heart mitochondria. Ann N Y Acad Sci 717:233–243

    Article  PubMed  CAS  Google Scholar 

  8. Kawasaki K, Kuge O, Chang SC, Heacock PN, Rho M, Suzuki K, Nishijima M, Dowhan W (1999) Isolation of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J Biol Chem 274:1828–1834

    Article  PubMed  CAS  Google Scholar 

  9. Schlame M (2007) Assays of cardiolipin levels. Methods Cell Biol 80:223–240

    Article  PubMed  CAS  Google Scholar 

  10. Jolly C, Hubbell T, Behnke WD, Schroeder F (1997) Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation. Arch Biochem Biophys 341:112–121

    Article  PubMed  CAS  Google Scholar 

  11. Wolff R, Combe NA, Entressangles B (1985) Positional distribution of fatty acids in cardiolipin of mitochondria from 21-day-old rats. Lipids 20:908–914

    Article  PubMed  CAS  Google Scholar 

  12. Fine J, Sprecher H (1982) Unidimensional thin-layer chromatography of phospholipids on boric acid-impregnated plates. J Lipid Res 23:660–663

    PubMed  CAS  Google Scholar 

  13. Yabuuchi H, O’Brien JS (1968) Brain cardiolipin: isolation and fatty acid positions. J Neurochem 15:1383–1390

    Article  PubMed  CAS  Google Scholar 

  14. Lesnefsky E, Stoll MS, Minkler PE, Hoppel CL (2000) Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal Biochem 285:246–254

    Article  PubMed  CAS  Google Scholar 

  15. Petit J, Maftah A, Ratinaud MH, Julien R (1992) 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209:267–273

    Article  PubMed  CAS  Google Scholar 

  16. Gohil VM, Gvozdenovic-Jeremic J, Schlame M, Greenberg ML (2005) Binding of 10-N-nonyl acridine orange to cardiolipin-deficient yeast cells: implications for assay of cardiolipin. Anal Biochem 343:350–352

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson J, Duchen MR, Heales SJ (2002) Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. J Neurochem 82:224–233

    Article  PubMed  CAS  Google Scholar 

  18. Keij JF, Bell-Prince C, Steinkamp JA (2000) Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 39:203–210

    Article  PubMed  CAS  Google Scholar 

  19. Han X, Yang K, Yang J, Cheng H, Gross RW (2006) Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J Lipid Res 47:864–879

    Article  PubMed  CAS  Google Scholar 

  20. Dugan L, Demediuk P, Pendley CEII, Horrocks LA (1986) Separation of phospholipids by high-performance liquid chromatography: all major classes, including ethanolamine and choline plasmalogens, and most minor classes, including lysophosphatidylethanolamine. J Chromatogr 378:317–327

    Article  PubMed  CAS  Google Scholar 

  21. Barcelo-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ (2007) Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J Neurochem 101:132–141

    Article  PubMed  CAS  Google Scholar 

  22. Ellis C, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barcelo-Coblijn GC, Nussbaum RL (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein. Mol Cell Biol 25:10190–10201

    Article  PubMed  CAS  Google Scholar 

  23. Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    Article  PubMed  CAS  Google Scholar 

  24. Radin N (1988) Lipid extraction. In: Boulton AA, Baker GB, Horrocks LA (eds) Neuromethods lipids and related compounds. Humana, Clifton

    Google Scholar 

  25. Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    Article  PubMed  CAS  Google Scholar 

  26. Brockerhoff H (1975) Determination of the positional distribution of fatty acids in glycerolipids. Methods Enzymol 35:315–325

    Article  PubMed  CAS  Google Scholar 

  27. Jones M, Keenan RW, Horowitz P (1982) Use of 6-p-toluidino-2-naphthalenesulfonic acid to quantitate lipids after thin-layer chromatography. J Chromatogr 237:522–524

    Article  CAS  Google Scholar 

  28. Schlame M, Brody S, Hostetler KY (1993) Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur J Biochem 212:727–735

    Article  PubMed  CAS  Google Scholar 

  29. Keenan T, Awasthi YC, Crane FL (1970) Cardiolipin from beef heart mitochondria: fatty acid positioning and molecular species distribution. Biochem Biophys Res Commun 40:1102–1109

    Article  PubMed  CAS  Google Scholar 

  30. Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, Amoscato AA, Zhao Q, Zhang XJ, Janesko-Feldman KL, Alexander H, Basova LV, Clark RS, Kochanek PM, Kagan VE (2007) Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann Neurol 62:154–169

    Article  PubMed  CAS  Google Scholar 

  31. Cheng H, Mancuso DJ, Jiang X, Guan S, Yang J, Yang K, Sun G, Gross RW, Han X (2008) Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodeling. Biochemistry 47:5869–5880

    Article  PubMed  CAS  Google Scholar 

  32. Hoch F (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    PubMed  CAS  Google Scholar 

  33. Hostetler K (1982) Polyglycerolphospholipids. In: Hawthorne JN, Ansell GB (eds) Phospholipids. Elsevier, Amsterdam

    Google Scholar 

  34. Castagnet P, Golovko MY, Barcelo-Coblijn GC, Nussbaum RL, Murphy EJ (2005) Fatty acid incorporation is decreased in astrocytes cultured from alpha-synuclein gene-ablated mice. J Neurochem 94:839–849

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part as a project to EJ Murphy on a COBRE grant from the NIH 1P20 RR117699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Murphy.

About this article

Cite this article

Barceló-Coblijn, G., Murphy, E.J. An Improved Method for Separating Cardiolipin by HPLC. Lipids 43, 971–976 (2008). https://doi.org/10.1007/s11745-008-3212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3212-3

Keywords

Navigation