Anti-Tumor Effect of Orally Administered Spinach Glycolipid Fraction on Implanted Cancer Cells, Colon-26, in Mice

Abstract

We succeeded in purifying a major glycolipid fraction from a green vegetable, spinach. This fraction consists mainly of three glycolipids: monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), and sulfoquinovosyl diacylglycerol (SQDG). In a previous study, we found that the glycolipid fraction inhibited DNA polymerase activity, cancer cell growth and tumor growth with subcutaneous injection. We aimed to clarify oral administration of the glycolipid fraction, suppressing colon adenocarcinoma (colon-26) tumor growth in mice. A tumor graft study showed that oral administration of 20 mg/kg glycolipid fraction for 2 weeks induced a 56.1% decrease in the solid tumor volume (P < 0.05) without any side-effects, such as loss of body weight or major organ failure, in mice. The glycolipid fraction induced the suppression of colon-26 tumor growth with inhibition of angiogenesis and the expression of cell proliferation marker proteins such as Ki-67, proliferating cell nuclear antigen (PCNA), and Cyclin E in the tumor tissue. These results suggest that the orally administered glycolipid fraction from spinach could suppress colon tumor growth in mice by inhibiting the activities of neovascularization and cancer cellular proliferation in tumor tissue.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

MGDG:

Monogalactosyl diacylglycerol

DGDG:

Digalactosyl diacylglycerol

SQDG:

Sulfoquinovosyl diacylglycerol

PBS:

Phosphate-buffered saline

PCNA:

Proliferating cell nuclear antigen

vWF:

von Willebrand Factor

MVD:

Microvessel density

References

  1. 1.

    Roughan PG, Batt RD (1969) The glycerolipid composition of leaves. Phytochemistry 8:363–369

    Article  CAS  Google Scholar 

  2. 2.

    Ohta K, Mizushina Y, Hirata N, Takemura M, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type 1 from a marine red alga, Gigartina tenella. Chem Pharm Bull (Tokyo) 46:684–686

    CAS  Google Scholar 

  3. 3.

    Mizushina Y, Watanabe I, Ohta K, Takemura M, Sahara H, Takahashi N, Gasa S, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Studies on inhibitors of mammalian DNA polymerase alpha and beta: sulfolipids from a pteridophyte, Athyrium niponicum. Biochem Pharmacol 55:537–541

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ohta K, Hanashima S, Mizushina Y, Yamazaki T, Saneyoshi M, Sugawara F, Sakaguchi K (2000) Studies on a novel DNA polymerase inhibitor group, synthetic sulfoquinovosylacylglycerols: inhibitory action on cell proliferation. Mutat Res 467:139–152

    PubMed  CAS  Google Scholar 

  5. 5.

    Hanashima S, Mizushina Y, Ohta K, Yamazaki T, Sugawara F, Sakaguchi K (2000) Structure–activity relationship of a novel group of mammalian DNA polymerase inhibitors, synthetic sulfoquinovosylacylglycerols. Jpn J Cancer Res 91:1073–1083

    PubMed  CAS  Google Scholar 

  6. 6.

    Murakami C, Kumagai T, Hada T, Kanekazu U, Nakazawa S, Kamisuki S, Maeda N, Xu X, Yoshida H, Sugawara F, Sakaguchi K, Mizushina Y (2003) Effects of glycolipids from spinach on mammalian DNA polymerases. Biochem Pharmacol 65:259–267

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Maeda N, Hada T, Yoshida H, Mizushina Y (2007) Inhibitory effect on replicative DNA polymerases, human cancer cell proliferation, and in vivo anti-tumor activity by glycolipids from spinach. Curr Med Chem 14:955–967

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Quasney ME, Carter LC, Oxford C, Watkins SM, Gershwin ME, German JB (2001) Inhibition of proliferation and induction of apoptosis in SNU-1 human gastric cancer cells by the plant sulfolipid, sulfoquinovosyldiacylglycerol. J Nutr Biochem 12:310–315

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Hossain Z, Kurihara H, Hosokawa M, Takahashi K (2005) Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in Caco-2 cells with algal glycolipids. In Vitro Cell Dev Biol Anim 41:154–159

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Matsubara K, Matsumoto H, Mizushina Y, Mori M, Nakajima N, Fuchigami M, Yoshida H, Hada T (2005) Inhibitory effect of glycolipids from spinach on in vitro and ex vivo angiogenesis. Oncol Rep 14:157–160

    PubMed  CAS  Google Scholar 

  11. 11.

    Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, Iwashima A (1995) Anti-tumor-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40:1433–1437

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Colombo D, Franchini L, Toma L, Ronchetti F, Nakabe N, Konoshima T, Nishino H, Tokuda H (2005) Anti-tumor-promoting activity of simple models of galactoglycerolipids with branched and unsaturated acyl chains. Eur J Med Chem 40:69–74

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Inoue T, Dehmukh DS, Pieringer RA (1971) The association of the galactosyl diglycerides of brain with myelination. I: changes in the concentration of monogalactosyl diglyceride in the somal and myelin fractions of brain of rats during development. J Biol Chem 246:5688–5694

    PubMed  CAS  Google Scholar 

  14. 14.

    Nagai Y, Isono Y (1965) Occurrence of animal sulfolipid in the gametes of sea urchins. Jpn J Exp Med 35:315–318

    PubMed  CAS  Google Scholar 

  15. 15.

    Kitagawa I, Hamamoto Y, Kobayashi M (1979) Sulfonoglycolipid from the sea urchin Anthocidaris crassispina A. Agassiz. Chem Pharm Bull (Tokyo) 27:1394–1397

    CAS  Google Scholar 

  16. 16.

    Kuriyama I, Musumi K, Yonezawa Y, Takemura M, Maeda N, Iijima H, Hada T, Yoshida H, Mizushina Y (2005) Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. J Nutr Biochem 16:594–601

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Maeda N, Hada T, Murakami-Nakai C, Kuriyama I, Ichikawa H, Fukumori Y, Hiratsuka J, Yoshida H, Sakaguchi K, Mizushina Y (2005) Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach. J Nutr Biochem 16:121–128

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Maeda N, Kokai Y, Ohtani S, Sahara H, Hada T, Ishimaru C, Kuriyama I, Yonezawa Y, Iijima H, Yoshida H, Sato N, Mizushina Y (2007) Anti-tumor effects of the glycolipids fraction from spinach which inhibited DNA polymerase activity. Nutr Cancer 57:216–223

    PubMed  CAS  Google Scholar 

  19. 19.

    Ohlsson L, Blom M, Bohlinder K, Carlsson A, Nilsson A (1998) Orally fed digalactosyldiacylglycerol is degraded during absorption in intact and lymphatic duct cannulated rats. J Nutr 128:239–245

    PubMed  CAS  Google Scholar 

  20. 20.

    Sugawara T, Miyazawa T (2000) Digestion of plant monogalactosyldiacylglycerol and digalactosyldiacylglycerol in rat alimentary canal. J Nutr Biochem 11:147–152

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Andersson L, Bratt C, Arnoldsson KC, Herslof B, Olsson NU, Sternby B, Nilsson A (1995) Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J Lipid Res 36:1392–1400

    PubMed  CAS  Google Scholar 

  22. 22.

    Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 35:2434–2439

    PubMed  CAS  Google Scholar 

  23. 23.

    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

    PubMed  CAS  Google Scholar 

  25. 25.

    Kubben FJ, Peeters-Haesevoets A, Engels LG, Baeten CG, Schutte B, Arends JW, Stockbrugger RW, Blijham GH (1994) Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35:530–535

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Dong Y, Sui L, Tai Y, Sugimoto K, Hirao T, Tokuda M (2000) Prognostic significance of cyclin E overexpression in laryngeal squamous cell carcinomas. Clin Cancer Res 6:4253–4258

    PubMed  CAS  Google Scholar 

  27. 27.

    Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    PubMed  CAS  Google Scholar 

  28. 28.

    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  29. 29.

    Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Bossi P, Viale G, Lee AK, Alfano R, Coggi G, Bosari S (1995) Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 55:5049–5053

    PubMed  CAS  Google Scholar 

  31. 31.

    Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968

    PubMed  CAS  Google Scholar 

  32. 32.

    Takahashi Y, Bucana CD, Liu W, Yoneda J, Kitadai Y, Cleary KR, Ellis LM (1996) Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J Natl Cancer Inst 88:1146–1151

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, Bedrosian I, Knickerbocker C, Toyofuku W, Lowe M, Herliczek TW, Bacus SS (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347:1566–1575

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Dobashi Y, Jiang SX, Shoji M, Morinaga S, Kameya T (2003) Diversity in expression and prognostic significance of G1/S cyclins in human primary lung carcinomas. J Pathol 199:208–220

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Hotta K, Shimoda T, Nakanishi Y, Saito D (2006) Usefulness of Ki-67 for predicting the metastatic potential of rectal carcinoids. Pathol Int 56:591–596

    PubMed  Article  Google Scholar 

  36. 36.

    Mizushina Y, Maeda N, Kawasaki M, Ichikawa H, Murakami C, Takemura M, Xu X, Sugawara F, Fukumori Y, Yoshida H, Sakaguchi K (2003) Inhibitory action of emulsified sulfoquinovosyl acylglycerol on mammalian DNA polymerases. Lipids 38:1065–1074

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This investigation was supported by a Grant-in-Aid for JSPS Fellows (N. M.), a Grant-in-Aid for Kobe-Gakuin University Joint Research (A) (H. Y. and Y. M.) and a “Life Science Center for Cooperative Research” Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2006–2010 (H. Y. and Y. M.). Y. M. acknowledges a Grant-in-Aid for Young Scientists (A) (No. 19680031) from MEXT, and Grant-in-Aids from the Nakashima Foundation (Japan) and the Foundation of the Oil & Fat Industry kaikan (Japan).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Mizushina.

About this article

Cite this article

Maeda, N., Kokai, Y., Ohtani, S. et al. Anti-Tumor Effect of Orally Administered Spinach Glycolipid Fraction on Implanted Cancer Cells, Colon-26, in Mice. Lipids 43, 741 (2008). https://doi.org/10.1007/s11745-008-3202-5

Download citation

Keywords

  • Glycolipid
  • Spinach
  • Anti-tumor activity
  • Anti-angiogenesis activity
  • Anti-cancer cell growth activity