Skip to main content
Log in

Autoxidation of Conjugated Linoleic Acid Methyl Ester in the Presence of α-Tocopherol: The Hydroperoxide Pathway

  • Original Article
  • Published:
Lipids

Abstract

Autoxidation of conjugated linoleic acid (CLA) methyl ester follows at least partly Farmer’s hydroperoxide theory. A mechanism for this hydroperoxide pathway has been proposed based on autoxidation of 9-cis,11-trans-CLA methyl ester. This investigation aims at confirming and further clarifying the mechanism by analyzing the hydroperoxides produced from 10-trans,12-cis-CLA methyl ester and by theoretical calculations. Five methyl hydroxyoctadecadienoates were isolated by HPLC and characterized by UV, GC-MS, and 1D- and 2D-NMR techniques. In addition, an HPLC method for the separation of the intact hydroperoxides was developed. The autoxidation of 10-trans,12-cis-CLA methyl ester in the presence of high amount of α-tocopherol (20%) was diastereoselective in favor of one geometric isomer, namely Me 9-OOH-10t,12c, and produced new positional isomers 10- and 14-hydroperoxides (Me 10-OOH-11t,13t; Me 14-OOH-10t,12c; and Me 14-OOH-10t,12t). Importantly, one of these new isomers, which was characterized as an intact hydroperoxide, had an unusual cis,trans geometry where the cis double bond is adjacent to the hydroperoxyl-bearing methine carbon. Further insight to the mechanism was provided by calculating the relative energies for different conformations of the precursor lipid, the allylic carbon–hydrogen bond dissociation enthalpies, and the spin distributions on the intermediate pentadienyl radicals. As a result, a better understanding of the isomeric distribution of the product hydroperoxides was achieved and a modified mechanism that accounts for these calculations is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2

Similar content being viewed by others

Notes

  1. The CLA methyl ester hydroperoxides and their hydroxy derivatives are abbreviated in the following manner: Me 9-(O)OH-10t,12c stands for racemic methyl (hydroperoxy)hydroxyoctadecadienoate where the (hydroperoxyl) hydroxyl group is located at C-9 and the double bonds at C-10 and C-12. The geometry of the double bonds is denoted by c or t that refer to cis and to trans geometry.

Abbreviations

BSTFA:

Bis(trimethylsilyl)-trifluoroacetamide

COSY:

Correlated spectroscopy

C–H BDE:

Carbon–hydrogen bond dissociation enthalpy

DFT:

Density functional theory

gHMBC:

Gradient heteronuclear multiple bond correlation

gHSQC:

Gradient heteronuclear single quantum coherence

LR-COSY:

Long-range COSY

Me 9-OH-10t,12c :

Methyl 9-(R,S)-hydroxy-10-trans,12-cis-octadecadienoate

methyl linoleate:

Methyl 9-cis,12-cis-octadecadienoate

TMCS:

Trimethylchlorosilane

TOCSY:

Total correlation spectroscopy

References

  1. Pariza MW, Park Y, Cook ME (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40:283–298

    Article  CAS  PubMed  Google Scholar 

  2. Belury MA (2002) Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 132:2995–2998

    CAS  PubMed  Google Scholar 

  3. Evans ME, Brown JM, McIntosh MK (2002) Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism. J Nutr Biochem 13:508–516

    Article  CAS  PubMed  Google Scholar 

  4. Allen RR, Jackson A, Kummerrow FA (1949) Factors which affect the stability of highly unsaturated fatty acids. I. Differences in the oxidation of conjugated and nonconjugated linoleic acid. J Am Oil Chem Soc 26:395–399

    Article  CAS  Google Scholar 

  5. Kern W, Heinz AR, Stallman J (1955) Über die Autoxydation ungesättigter Verbindungen. IV. Die Autoxydation des 2,3-Dimethylbutadiens(1.3) und des 10,12-Octadecadiensäuremethylesters. Macromol Chem 16:21–35

    Article  CAS  Google Scholar 

  6. Kern W, Heinz AR, Höhr D (1956) Über die Autoxydation ungesättigter Verbindungen. VI. Die Autoxydation des 9,11-Octadecadiensäuremethylesters. Macromol Chem 18/19:406–413

    Article  CAS  Google Scholar 

  7. Privett OS (1959) Autoxidation and autoxidative polymerization. J Am Oil Chem Soc 36:507–512

    Article  CAS  Google Scholar 

  8. Yurawecz MP, Sehat N, Mossoba MM, Roach JAG, Ku Y (1997) Oxidation products of conjugated linoleic acid and furan fatty acids. In: McDonald RE, Mossoba MM (eds) New techniques and applications in lipid analysis. AOCS Press, Champaign

    Google Scholar 

  9. Eulitz K, Yurawecz MP, Ku Y (1999) The oxidation of conjugated linoleic acid. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research, vol 1. AOCS Press, Champaign

    Google Scholar 

  10. Yurawecz MP, Delmonte P, Vogel T, Kramer JKG (2003) Oxidation of conjugated linoleic acid: initiators and simultaneous reactions: theory and practice. In: Sébédio J-L, Christie WW, Adlof R (eds) Advances in conjugated linoleic acid research, vol 2. AOCS Press, Champaign

    Google Scholar 

  11. Hämäläinen TI, Sundberg S, Mäkinen M, Kaltia S, Hase T, Hopia A (2001) Hydroperoxide formation during autoxidation of conjugated linoleic acid methyl ester. Eur J Lipid Sci Technol 103:588–593

    Article  Google Scholar 

  12. Hämäläinen TI, Sundberg S, Hase T, Hopia A (2002) Stereochemistry of the hydroperoxides formed during autoxidation of CLA methyl ester in the presence of α-tocopherol. Lipids 37:533–540

    Article  PubMed  Google Scholar 

  13. Minemoto Y, Adachi S, Shimada Y, Nagao T, Iwata T, Yamauchi-Sato Y, Yamamoto T, Kometani T, Matsuno R (2003) Oxidation kinetics for cis-9, trans-11 and trans-10, cis-12 isomers of CLA. J Am Oil Chem Soc 80:675–678

    Article  CAS  Google Scholar 

  14. Davis AL, McNeill GP, Caswell DC (1999) Analysis of conjugated linoleic acid isomers by 13C NMR spectroscopy. Chem Phys Lipids 97:155–165

    Article  CAS  Google Scholar 

  15. Ueda S, Hayashi T, Namiki M (1986) Effect of ascorbic acid on lipid autoxidation in a model food system. Agric Biol Chem 50:1–7

    CAS  Google Scholar 

  16. Chan HW-S, Levett G (1977) Autoxidation of methyl linoleate, separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids 12:99–104

    Article  CAS  PubMed  Google Scholar 

  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system TURBOMOLE. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  20. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  21. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  22. Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) COSMO implementation in TURBOMOLE: extension of an efficient quantum chemical code towards liquid systems. Phys Chem Chem Phys 2:2187–2193

    Article  Google Scholar 

  23. Lide DR (ed) (1999) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton

    Google Scholar 

  24. Johansson MP, Sundholm D, Gerfen G, Wikström M (2002) The spin distribution in low-spin iron porphyrins. J Am Chem Soc 124:11771–11780

    Article  CAS  PubMed  Google Scholar 

  25. Bakalbassis EG, Chatzopulou A, Melissas VS, Tsimidou M, Tsolaki M, Vafiadis A (2001) Ab initio and density functional theory studies for the explanation of the antioxidant activity of certain phenolic acids. Lipids 36:181–191

    Article  CAS  PubMed  Google Scholar 

  26. Pratt DA, Mills JH, Porter NA (2003) Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. J Am Chem Soc 125:5801–5810

    Article  CAS  PubMed  Google Scholar 

  27. Lilienkampf A, Johansson MP, Wähälä K (2003) (Z)-1-Aryl-1-haloalkenes as intermediates in the Vilsmeier haloformylation of aryl ketones. Org Lett 5:3387–3390

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Shi B, Shi J (2007) A theoretical study on autoxidation of unsaturated fatty acids and antioxidant activity of phenolic compounds. J Am Leather Chem Assoc 102:99–105

    CAS  Google Scholar 

  29. Fu Y, Liu L, Liu R, Guo Q-X (2005) Homolytic bond dissociation energies of 4-substituted bicyclo[2.2.2]octanyl compounds: inductive/field effects on the stabilities of organic radicals. J Phys Org Chem 18:529–538

    Article  CAS  Google Scholar 

  30. Gardner HW (1989) Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med 7:65–86

    Article  CAS  PubMed  Google Scholar 

  31. Frankel EN (1998) Lipid oxidation, vol 10. The Oily Press, Dundee

    Google Scholar 

  32. Luna P, de la Fuente MA, Salvador D, Márquez-Ruiz G (2007) Differences in oxidation kinetics between conjugated and non-conjugated methyl linoleate. Lipids 42:1085–1092

    Article  CAS  PubMed  Google Scholar 

  33. Chan HW-S, Levett G, Matthew JA (1979) The mechanism of the rearrangement of linoleate hydroperoxides. Chem Phys Lipids 24:245–256

    Article  CAS  Google Scholar 

  34. Porter NA, Weber BA, Weenen H, Khan JA (1980) Autoxidation of polyunsaturated lipids. Factors controlling the stereochemistry of product hydroperoxides. J Am Chem Soc 102:5597–5601

    Article  CAS  Google Scholar 

  35. Porter NA, Lehman LS, Weber BA, Smith KJ (1981) Unified mechanism for polyunsaturated fatty acid autoxidation. Competition of peroxy radical hydrogen atom abstraction, β-scission, and cyclization. J Am Chem Soc 103:6447–6455

    Article  CAS  Google Scholar 

  36. Porter NA, Wujek DG (1984) Autoxidation of polyunsaturated fatty acids, an expanded mechanistic study. J Am Chem Soc 106:2626–2629

    Article  CAS  Google Scholar 

  37. Hämäläinen TI, Kamal-Eldin A (2005) Analysis of lipid oxidation products by NMR spectroscopy. In: Kamal-Eldin A, Pokornÿ J (eds) Analysis of lipid oxidation. AOCS Press, Champaign

    Google Scholar 

  38. Garwood RF, Khambay BPS, Weedon BCL, Frankel EN (1977) Allylic hydroperoxides from the autoxidation of methyl oleate. J Chem Soc Chem Commun pp 364-365

  39. Frankel EN, Garwood RF, Khambay BPS, Moss GP, Weedon BCL (1984) Stereochemistry of olefin and fatty acid oxidation. Part 3. The allylic hydroperoxides from the autoxidation of methyl oleate. J Chem Soc Perkin Trans 1:2233–2240

    Article  Google Scholar 

  40. Porter NA, Mills KA, Carter RL (1994) A mechanistic study of oleate autoxidation: competing peroxyl H-atom abstraction and rearrangement. J Am Chem Soc 116:6690–6696

    Article  CAS  Google Scholar 

  41. Pajunen TI, Koskela H, Hase T, Hopia A (2008) NMR properties of conjugated linoleic acid (CLA) methyl ester hydroperoxides. Chem Phys Lipids. doi:10.1016/j.chemphyslip.2008.05.001

  42. Bascetta E, Gunstone FD, Walton JC (1983) An electron spin resonance study of fatty acids and esters. Part 1. Hydrogen abstraction from oleic acid and acetylenic long chain esters. J Chem Soc Perkin Trans 2:603–613

    Google Scholar 

  43. Sustmann R, Schmidt H (1979) Pentadienyl-Radicale-Struktur und Spindichteverteilung. Chem Ber 112:1140–1447

    Article  Google Scholar 

  44. Griller D, Ingold KU, Walton JC (1979) Two conformations of the pentadienyl radical. J Am Chem Soc 101:758–759

    Article  CAS  Google Scholar 

  45. Burton GW, Hughes L, Ingold KU (1983) Antioxidant activity of phenols related to vitamin E. Are there chain-breaking antioxidants better than α-tocopherol? J Am Chem Soc 105:5950–5951

    Article  CAS  Google Scholar 

  46. Burton GW, Doba T, Gabe EJ, Hughes L, Lee FL, Prasad L, Ingold KU (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053–7065

    Article  CAS  Google Scholar 

  47. Manring LE, Kanner RC, Foote CS (1983) Chemistry of singlet oxygen. 43. Quenching by conjugated olefins. J Am Chem Soc 105:4707–4710

    Article  CAS  Google Scholar 

  48. Manring LE, Foote CS (1983) Chemistry of singlet oxygen. 44. Mechanism of photooxidations of 2,5-dimethylhexa-2,4-diene and 2-methyl-2-penten. J Am Chem Soc 105:4710–4717

    Article  CAS  Google Scholar 

  49. O’Shea KE, Foote CS (1988) Chemistry of singlet oxygen. 51. Zwitterionic intermediates from 2,4-hexadienes. J Am Chem Soc 110:7167–7170

    Article  CAS  Google Scholar 

  50. Tallman KA, Pratt DA, Porter NA (2001) Kinetic products of linoleate peroxidation: rapid β-fragmentation of nonconjugated peroxyls. J Am Chem Soc 123:11827–11828

    Article  CAS  PubMed  Google Scholar 

  51. Tallman KA, Roschek B Jr, Porter NA (2004) Factors influencing the autoxidation of fatty acids: effect of olefin geometry of the nonconjugated diene. J Am Chem Soc 126:9240–9247

    Article  CAS  PubMed  Google Scholar 

  52. Chan HW-S (1987) The mechanism of autoxidation. In: Chan HW-S (ed) Autoxidation of unsaturated lipids. Academic Press, London

    Google Scholar 

  53. Porter NA, Caldwell SA, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    Article  CAS  PubMed  Google Scholar 

  54. Macinnes I, Walton JC (1985) Rotation barriers in pentadienyl and pent-2-en-4-ynyl radicals. J Chem Soc Perkin Trans 2:1073–1076

    Google Scholar 

  55. Davies AG, Griller D, Ingold KU, Lindsay DA (1981) An electron spin resonance study of pentadienyl and related radicals: homolytic fission of cyclobut-2-enylmethyl radicals. J Chem Soc Perkin Trans 2:633–641

    Google Scholar 

  56. Gräfenstein J, Cremer D (2001) On the diagnostic value of <S2> in Kohn–Sham density functional theory. Mol Phys 99:981–989

    Article  Google Scholar 

  57. Bascetta E, Gunstone FD, Scrimgeour CM, Walton JC (1982) E.S.R. observation of pentadienyl and allyl radicals on hydrogen abstraction from unsaturated lipids. J Chem Soc Chem Commun pp 110–112

  58. van Speybroeck V, Marin GB, Waroquier M (2006) Hydrocarbon bond dissociation enthalpies: from substituted aromatics to large polyaromatics. Chem Phys Chem 7:2205–2214

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge funding support from the Finnish Cultural Foundation, the Emil Aaltonen Foundation, and the Orion Corporation Research Foundation. CSC—The Finnish IT Center for Science is acknowledged for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taina I. Pajunen.

About this article

Cite this article

Pajunen, T.I., Johansson, M.P., Hase, T. et al. Autoxidation of Conjugated Linoleic Acid Methyl Ester in the Presence of α-Tocopherol: The Hydroperoxide Pathway. Lipids 43, 599–610 (2008). https://doi.org/10.1007/s11745-008-3195-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3195-0

Key words

Navigation