Skip to main content
Log in

Structural Importance of the Acyl Group in Substrate Specificity of Purified Bovine Lysophospholipase D

  • Original Article
  • Published:
Lipids

Abstract

The structural importance of the acyl group in lysophosphatidylcholine (LPC) as substrate of purified bovine lysophospholipase D (lysoPLD) was investigated. Among LPCs with saturated acyl chains, the K m value decreased according to the length of the acyl chain (C12–C16) up to the palmitoyl group, while the V m value showed no remarkable change. But, the extension of the acyl size to C18, as observed with 1-stearoyl LPC (K m, 8.5 mM), rather resulted in a remarkable increase in the K m value. Meanwhile, the introduction of one double bond in the C18 saturated acyl chain led to a remarkable reduction in the K m value, as observed with 1-oleoyl LPC (K m, 0.48 mM). Furthermore, 1-linoleoyl LPC (K m, 56 μM) with two double bonds exhibited a smaller K m value than 1-oleoyl LPC, suggesting that the unsaturation degree might be important in augmenting the binding affinity of LPCs. A similar phenomenon was also observed with 1-arachidonoly LPC (K m, 79 μM) or 1-docosahexaenoyl LPC (K m, 36 μM). Overall, the order of catalytic efficiency (V m/K m value) of those LPCs seemed to be affected by the K m value rather than the V m value, which differed by at most threefold among LPC derivatives. Next, the introduction of a hydroperoxide group into 1-linoleoyl-LPC or 1-arachidonoyl LPC led to a further reduction in K m values (1-hydroperoxylinoleoyl LPC, 26 μM; 1-hydroperoxyarachidonoyl LPC, 33 μM), accompanied by a further increase in the V m/K m values. Additionally, phosphatidylcholines (PCs) with an oxidized acyl chain at sn-2 position were found to be efficient as 1-palmitoyl LPC as substrates of lysoPLD. Taken together, the catalytic efficiency of LPCs or oxidized PCs as substrates of lysoPLD seems to be determined by the property of the acyl chain, length of the acyl chain, unsaturation degree and oxidation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LysoPLD:

Lysophospholipase D

LPC:

Lysophosphatidylcholine

LPA:

Lysophosphatidic acid

PC:

Phosphatidylcholine

AzPC:

1-Palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine

PGPC:

1-Palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine

References

  1. van Meeteren LA, Moolenaar WH (2007) Regulation and biological activities of the autotaxin-LPA axis. Prog Lipid Res 46:145–160

    Article  PubMed  CAS  Google Scholar 

  2. Wykle RL, Schremmer JM (1974) A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes. J Biol Chem 249:1742–1746

    PubMed  CAS  Google Scholar 

  3. Yamashita M, Homma H, Inoue K, Nojima S (1983) The metabolism of platelet activating factor in platelets and plasma of various animals. J Toxicol Sci 8:177–188

    PubMed  CAS  Google Scholar 

  4. Tokumura A, Miyake M, Nishioka Y, Yamano S, Aono T, Fukuzawa K (1999) Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of in vitro fertilization patients. Biol Reprod 61:195–199

    Article  PubMed  CAS  Google Scholar 

  5. Tokumura A, Fujimoto H, Yoshimoto O, Nishioka Y, Miyake M, Fukuzawa K (1999) Production of lysophosphatidic acid by lysophospholipase D in incubated plasma of spontaneously hypertensive rats and Wistar Kyoto rats. Life Sci 65:245–253

    Article  PubMed  CAS  Google Scholar 

  6. Gesta S, Simon M, Rey A, Sibrac D, Girard A, Lafontan M, Valet P, Saulnier-Blache J (2002) Secretion of a lysophospholipase D activity by adipocytes, involvement in lysophosphatidic acid synthesis. J Lipid Res 43:904–910

    PubMed  CAS  Google Scholar 

  7. Clair T, Lee HY, Liotta LA, Stracke ML (1997) Autotaxin is an exoenzyme possessing 5′-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 272:996–1001

    Article  PubMed  CAS  Google Scholar 

  8. van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, Kikuchi K, Perrakis A, Nagano T, Moolenaar WH (2005) Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 280:21155–21161

    Article  PubMed  CAS  Google Scholar 

  9. Aoki J, Taira A, Takanezawa Y, Kishi Y, Hama K, Kishimoto T, Mizuno K, Saku K, Taguchi R, Arai H (2002) Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J Biol Chem 277:39696–39702

    Article  PubMed  CAS  Google Scholar 

  10. Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML (2003) Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 63:5446–5453

    PubMed  CAS  Google Scholar 

  11. Sano T, Baker D, Virag T, Wada A, Yatomi Y, Kobayashi T, Igarashi Y, Tigyi G (2002) Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J Biol Chem 277:21197–21206

    Article  PubMed  CAS  Google Scholar 

  12. Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH (1993) The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 291:677–680

    PubMed  CAS  Google Scholar 

  13. Baker DL, Morrison P, Miller B, Riely CA, Tolley B, Westermann AM, Bonfrer JM, Bais E, Moolenaar WH, Tigyi G (2002) Plasma lysophosphatidic acid concentration and ovarian cancer. J Am Med Assoc 287:3081–3082

    Article  Google Scholar 

  14. Okita M, Gaudette DC, Mills GB, Holub BJ (1997) Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine (lysoPC) in ovarian cancer patients. Int J Cancer 71:31–34

    Article  PubMed  CAS  Google Scholar 

  15. Croset M, Brossard N, Polette A, Lagarde M (2000) Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345:61–67

    Article  PubMed  CAS  Google Scholar 

  16. Ojala PJ, Hirvonen TE, Hermansson M, Somerharju P, Parkkinen J (2007) Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils. J Leukoc Biol 82:1501–1509

    Article  PubMed  CAS  Google Scholar 

  17. Aoki J (2004) Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15:477–489

    Article  PubMed  CAS  Google Scholar 

  18. Baker DL, Fujiwara Y, Pigg KR, Tsukahara R, Kobayashi S, Murofushi H, Uchiyama A, Murakami-Murofush K, Koh E, Bandle RW, Byun HS, Bittman R, Fan D, Murph M, Mills GB, Tigyi G (2006) Carba analogs of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis. J Biol Chem 281:22786–22793

    Article  PubMed  CAS  Google Scholar 

  19. Liu XW, Sok DE, Yook HS, Sohn CB, Chung YJ, Kim MR (2007) Inhibition of lysophospholipase D activity by unsaturated lysophosphatidic acids or seed extracts containing 1-linoleoyl and 1-oleoyl lysophosphatidic acid. J Agric Food Chem 55:8717–8722

    Article  PubMed  CAS  Google Scholar 

  20. Tokumura A, Nishioka Y, Yoshimoto O, Shinomiya J, Fukuzawa K (1999) Substrate specificity of lysophospholipase D which produces bioactive lysophosphatidic acids in rat plasma. Biochim Biophys Acta 1437:235–245

    PubMed  CAS  Google Scholar 

  21. Sugimoto S, Sugimoto H, Aoyama C, Aso C, Mori M, Izumi T (2006) Purification and characterization of lysophospholipase D from rat brain. Biochim Biophys Acta 1761:1410–1418

    PubMed  CAS  Google Scholar 

  22. Tokumura A, Sinomiya J, Kishimoto S, Tanaka T, Kogure K, Sugiura T, Satouchi K, Waku K, Fukuzawa K (2002) Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids. Biochem J 365:617–628

    PubMed  CAS  Google Scholar 

  23. Roberts MF, Deems RA, Dennis EA (1977) Dual role of interfacial phospholipid in phospholipase A2 catalysis. Proc Natl Acad Sci USA 74:1950–1954

    Article  PubMed  CAS  Google Scholar 

  24. Huang LS, Kim MR, Jeong TS, Sok DE (2007) Linoleoyl lysophosphatidic acid and linoleoyl lysophosphatidylcholine are efficient substrates for mammalian lipoxygenases. Biochim Biophys Acta 1770:1062–1070

    PubMed  CAS  Google Scholar 

  25. Huang LS, Kim MR, Sok DE (2007) Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives. Lipids 42:981–990

    Article  PubMed  CAS  Google Scholar 

  26. Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277:39436–39442

    Article  PubMed  CAS  Google Scholar 

  27. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233

    Article  PubMed  CAS  Google Scholar 

  28. Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  29. Egmond MR, Brunori M, Fasella PM (1976) The steady-state kinetics of the oxygenation of linoleic acid catalysed by soybean lipoxygenase. Eur J Biochem 61:93–100

    Article  PubMed  CAS  Google Scholar 

  30. Ferguson CG, Bigman CS, Richardson RD, van Meeteren LA, Moolenaar WH, Prestwich GD (2006) Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity. Org Lett 8:2023–2026

    Article  PubMed  CAS  Google Scholar 

  31. Steel RGD, Torrie JH (1960) Analysis of variance I: the one-way classification, principles and procedures of statistics. McGraw-Hill, New York, pp 99–132

    Google Scholar 

  32. Arlt S, Beisiegel U, Kontush A (2002) Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr Opin Lipidol 13:289–294

    Article  PubMed  CAS  Google Scholar 

  33. Christopher J, Axelrod B (1971) On the different positional specificities of peroxidation of linoleate shown by two isozymes of soybean lipoxygenase. Biochem Biophys Res Commun 44:731–736

    Article  PubMed  CAS  Google Scholar 

  34. Li Z, Mintzer E, Bittman R (2004) The critical micelle concentrations of lysophosphatidic acid and sphingosylphosphorylcholine. Chem Phys Lipids 130:197–201

    Article  PubMed  CAS  Google Scholar 

  35. Kumar VV, Baumann WJ (1991) Lanthanide-induced phosphorus-31 NMR downfield chemical shifts of lysophosphatidylcholines are sensitive to lysophospholipid critical micelle concentration. Biophys J 59:103–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-531-C00067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mee Ree Kim.

About this article

Cite this article

Liu, XW., Sok, DE., Yook, HS. et al. Structural Importance of the Acyl Group in Substrate Specificity of Purified Bovine Lysophospholipase D. Lipids 43, 431–439 (2008). https://doi.org/10.1007/s11745-008-3162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3162-9

Keywords

Navigation