Skip to main content
Log in

Molecular Mechanism of Age-Specific Hepatic Lipid Accumulation in PPARα (+/−):LDLR (+/−) Mice, an Obese Mouse Model

  • Original Article
  • Published:
Lipids

Abstract

This study aimed to clarify the molecular mechanisms of age-specific hepatic lipid accumulation accompanying hyperinsulinemia in a peroxisome proliferator-activated receptor α (PPARα) (+/−):low-density lipoprotein receptor (LDLR) (+/−) mouse line. The hepatic fat content, protein amounts, and mRNA levels of genes involved in hepatic lipid metabolism were analyzed in 25-, 50-, 75- and 100-week-old mice. Severe fatty liver was confirmed only in 50- and 75-week-old mice. The hepatic expression of proteins that function in lipid transport and catabolism did not differ among the groups. In contrast, the mRNA levels and protein amounts of lipogenic enzymes, including acetyl-coenzyme A carboxylase-1, fatty acid synthase, and glycerol-3-phosphate acyltransferase, enhanced in the mice with fatty liver. Elevated mRNA and protein levels of lipoprotein lipase and fatty acid translocase, which are involved in hepatic lipid uptake, were also detected in mice with fatty liver. Moreover, both protein and mRNA levels of sterol regulatory element-binding protein-1 (SREBP-1), a transcription factor regulating lipid synthesis, had age-specific patterns similar to those of the proteins described above. Therefore, the age-specific fatty liver found in the PPARα (+/−):LDLR (+/−) mouse line is probably caused by age-specific expression of SREBP-1 and its downstream lipogenic genes, coordinated by the increased uptake of lipids. All of these factors might be affected by age-specific changes in serum insulin concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC-1:

Acetyl-CoA carboxylase-1

ACO:

Acyl-CoA oxidase

CoA:

Coenzyme A

CT :

Cycle threshold

DBF:

Peroxisomal D-type bifunctional protein

FAS:

Fatty acid synthase

FAT:

Fatty acid translocase

FATP:

Fatty acid transport protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GPAT:

Glycerol-3-phosphate acyltransferase

HTGL:

Hepatic triglyceride lipase

LACS:

Long chain acyl-CoA synthase

LDLR:

Low-density lipoprotein receptor

L-FABP:

Liver fatty acid-binding protein

LPL:

Lipoprotein lipase

MCAD:

Medium chain acyl-CoA dehydrogenase

MTP:

Microsomal triglyceride transfer protein

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

PPAR:

Peroxisome proliferator-activated receptor

PT:

Peroxisomal thiolase

SD:

Standard deviation

SDS:

Sodium dodecyl sulfate

SREBP-1:

Sterol regulatory element-binding protein-1

T1:

Short chain-specific 3-ketoacyl-CoA thiolase

References

  1. Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:852–858

    Article  Google Scholar 

  2. Asselah T, Rubbia-Brandt L, Marcellin P, Negro F (2006) Steatosis in chronic hepatitis C: why does it really matter? Gut 55:123–130

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008) PPARα activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118: 683–694

    PubMed  CAS  Google Scholar 

  4. Jakobsen MU, Berentzen T, Sørensen TI, Overvad K (2007) Abdominal obesity and fatty liver. Epidemiol Rev 29:77–87

    Article  PubMed  CAS  Google Scholar 

  5. Utzschneider KM, Kahn SE (2006) Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91:4753–4761

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka N, Tanaka E, Sheena Y, Komatsu M, Okiyama W, Misawa N, Muto H, Umemura T, Ichijo T, Matsumoto A, Yoshizawa K, Horiuchi A, Kiyosawa K (2006) Useful parameters for distinguishing nonalcoholic steatohepatitis with mild steatosis from cryptogenic chronic hepatitis in the Japanese population. Liver Int 26:956–963

    Article  PubMed  Google Scholar 

  7. Tanaka N, Ichijo T, Okiyama W, Mutou H, Misawa N, Matsumoto A, Yoshizawa K, Tanaka E, Kiyosawa K (2006) Laparoscopic findings in patients with nonalcoholic steatohepatitis. Liver Int 26:32–38

    Article  PubMed  Google Scholar 

  8. Tanaka N, Sano K, Horiuchi A, Tanaka E, Kiyosawa K, Aoyama T (2008) Highly-purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J Clin Gastroenterol (in press)

  9. Targher G, Arcaro G (2007) Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 191:235–240

    Article  PubMed  CAS  Google Scholar 

  10. Abdelmalek MF, Diehl AM (2007) Nonalcoholic fatty liver disease as a complication of insulin resistance. Med Clin North Am 91:1125–1149

    Article  PubMed  CAS  Google Scholar 

  11. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  12. Ferré P, Foretz M, Azzout-Marniche D, Bécard D, Foufelle F (2001) Sterol-regulatory-element-binding protein 1c mediates insulin action on hepatic gene expression. Biochem Soc Trans 29:547–552

    Article  PubMed  Google Scholar 

  13. Shimano H (2000) Sterol regulatory element-binding protein-1 as a dominant transcription factor for gene regulation of lipogenic enzymes in the liver. Trends Cardiovasc Med 10:275–278

    Article  PubMed  CAS  Google Scholar 

  14. Shimomura I, Bashmakov Y, Horton JD (1999) Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 274:30028–30032

    Article  PubMed  CAS  Google Scholar 

  15. Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, Amemiya-Kudo M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Nagai R, Ishibashi S, Yamada N (2002) Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers, but not obesity of insulin resistance in Lep ob/Lep ob mice. J Biol Chem 277:19353–19357

    Article  PubMed  CAS  Google Scholar 

  16. Lee CH, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207

    Article  PubMed  CAS  Google Scholar 

  17. Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366

    Article  PubMed  CAS  Google Scholar 

  18. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J Clin Invest 103:1489–1498

    Article  PubMed  CAS  Google Scholar 

  19. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator- activated receptor α (PPARα). J Biol Chem 273:5678–5684

    Article  PubMed  CAS  Google Scholar 

  20. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    Article  PubMed  CAS  Google Scholar 

  21. Kamijo Y, Hora K, Tanaka N, Usuda N, Kiyosawa K, Nakajima T, Gonzalez FJ, Aoyama T (2002) Identification of functions of peroxisome proliferator-activated receptor α in proximal tubules. J Am Soc Nephrol 13:1691–1702

    Article  PubMed  CAS  Google Scholar 

  22. Schoonjans K, Martin G, Staels B, Auwerx J (1997) Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 8:159–166

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T (2008) Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor α in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 122:124–131

    Article  PubMed  CAS  Google Scholar 

  24. Nakajima T, Kamijo Y, Tanaka N, Sugiyama E, Tanaka E, Kiyosawa K, Fukushima Y, Peters JM, Gonzalez FJ, Aoyama T (2004) Peroxisome proliferator-activated receptor α protects against alcohol-induced liver damage. Hepatology 40:972–980

    PubMed  CAS  Google Scholar 

  25. Kamijo Y, Hora K, Kono K, Takahashi K, Higuchi M, Ehara T, Kiyosawa K, Shigematsu H, Gonzalez FJ, Aoyama T (2007) PPARα protects proximal tubular cells from acute fatty acid toxicity. J Am Soc Nephrol 18:3089–3100

    Article  PubMed  CAS  Google Scholar 

  26. Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM (2006) PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 103:3444–3449

    Article  PubMed  CAS  Google Scholar 

  27. Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ (2003) Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 111:737–747

    PubMed  CAS  Google Scholar 

  28. Dietschy JM (1997) Theoretical considerations of what regulates low-density-lipoprotein and high-density-lipoprotein cholesterol. Am J Clin Nutr 65:1581–1589

    Google Scholar 

  29. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893

    Article  PubMed  CAS  Google Scholar 

  30. Towler DA, Bidder M, Latifi T, Coleman T, Semenkovich CF (1998) Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J Biol Chem 273:30427–30434

    Article  PubMed  CAS  Google Scholar 

  31. Sugiyama E, Tanaka N, Nakajima T, Kamijo Y, Yokoyama S, Li Y, Gonzalez FJ, Aoyama T (2006) Haploinsufficiency in the PPARα and LDL receptor genes leads to gender- and age-specific obesity and hyperinsulinemia. Biochem Biophys Res Commun 350:370–376

    Article  PubMed  CAS  Google Scholar 

  32. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022

    PubMed  CAS  Google Scholar 

  33. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  35. Aoyama T, Uchida Y, Kelley RI, Marble M, Hofman K, Tonsgard JH, Rhead WJ, Hashimoto T (1993) A novel disease with deficiency of mitochondrial very-long-chain acyl-CoA dehydrogenase. Biochem Biophys Res Commun 191:1369–1372

    Article  PubMed  CAS  Google Scholar 

  36. Aoyama T, Souri M, Ushikubo S, Kamijo T, Yamaguchi S, Kelley RI, Rhead WJ, Uetake K, Tanaka K, Hashimoto T (1995) Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J Clin Invest 95:2465–2473

    Article  PubMed  CAS  Google Scholar 

  37. Goldberg IJ, Ginsberg HN (2006) Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology 130:1343–1346

    Article  PubMed  CAS  Google Scholar 

  38. Albarado DC, McClaine J, Stephens JM, Mynatt RL, Ye J, Bannon AW, Richards WG, Butler AA (2004) Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice. Endocrinology 145:243–252

    Article  PubMed  CAS  Google Scholar 

  39. Goetzman ES, Tian L, Wood PA (2005) Differential induction of genes in liver and brown adipose tissue regulated by peroxisome proliferator-activated receptor-α during fasting and cold exposure in acyl-CoA dehydrogenase-deficient mice. Mol Genet Metab 84:39–47

    Article  PubMed  CAS  Google Scholar 

  40. Gudbrandsen OA, Rost TH, Berge RK (2006) Causes and prevention of tamoxifen-induced accumulation of triacylglycerol in rat liver. J Lipid Res 47:2223–2232

    Article  PubMed  CAS  Google Scholar 

  41. Zhang YL, Hernandez-Ono A, Siri P, Weisberg S, Conlon D, Graham MJ, Crooke RM, Huang LS, Ginsberg HN (2006) Aberrant hepatic expression of PPARγ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J Biol Chem 281:37603–37615

    Article  PubMed  CAS  Google Scholar 

  42. Shimano H, Horton JD, Hammer RE, Shimonura I, Brown MS, Goldstein JL (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98:1575–1584

    Article  PubMed  CAS  Google Scholar 

  43. Ericsson J, Jackson SM, Kim JB, Spiegelman BM, Edwards PA (1997) Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene. J Biol Chem 272:7298–7305

    Article  PubMed  CAS  Google Scholar 

  44. Foretz M, Guichard C, Ferre P, Foufelle F (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA 96:12737–12742

    Article  PubMed  CAS  Google Scholar 

  45. Azzout-Marniche D, Becard D, Guichard C, Foretz M, Ferre P, Foufelle F (2000) Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J 2:389–393

    Article  Google Scholar 

  46. Deng X, Cagen LM, Wilcox HG, Park EA, Raghow R, Elam MB (2002) Regulation of the rat SREBP-1c promoter in primary rat hepatocytes. Biochem Biophys Res Commun 290:256–262

    Article  PubMed  CAS  Google Scholar 

  47. Cagen LM, Deng X, Wilcox HG, Park EA, Raghow R, Elam MB (2005) Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem J 385:207–216

    Article  PubMed  CAS  Google Scholar 

  48. Okamoto K, Kakuma T, Fukuchi S, Masaki T, Sakata T, Yoshimatsu H (2006) Sterol regulatory element binding protein (SREBP)-1 expression in brain is affected by age but not by hormones or metabolic changes. Brain Res 1081:19–27

    Article  PubMed  CAS  Google Scholar 

  49. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348

    PubMed  CAS  Google Scholar 

  50. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N (1998) Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner. J Biol Chem 273:16710–16714

    Article  PubMed  CAS  Google Scholar 

  51. Dyck DJ, Steinberg G, Bonen A (2001) Insulin increases FA uptake and esterification but reduces lipid utilization in isolated contracting muscle. Am J Physiol Endocrinol Metab 281:600–607

    Google Scholar 

  52. Luiken JJ, Dyck DJ, Han XX, Tandon NN, Arumugam Y, Glatz JF, Bonen A (2002) Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the serum membrane. Am J Physiol Endocrinol Metab 282:491–495

    Google Scholar 

  53. Wu G, Brouckaert P, Olivecrona T (2004) Rapid downregulation of adipose tissue lipoprotein lipase activity on food deprivation: evidence that TNF-α is involved. Am J Physiol Endocrinol Metab 286:711–717

    Article  Google Scholar 

  54. Bernal-Mizrachi C, Weng S, Feng C, Finck BN, Knutsen RH, Leone TC, Coleman T, Mecham RP, Kelly DP, Semenkovich CF (2003) Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor-null mice. Nat Med 9:1069–1075

    Article  PubMed  CAS  Google Scholar 

  55. Tordjman K, Bernal-Mizrachi C, Zemany L, Weng S, Feng C, Zhang F, Leone TC, Coleman T, Kelly DP, Semenkovich CF (2001) PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 107:1025–1034

    Article  PubMed  CAS  Google Scholar 

  56. Sanguino E, Ramón M, Michalik L, Wahli W, Alegret M, Sánchez RM, Vázquez-Carrera M, Laguna JC (2004) Lack of hypotriglyceridemic effect of gemfibrozil as a consequence of age-related changes in rat liver PPARα. Biochem Pharmacol 67:157–166

    Article  PubMed  CAS  Google Scholar 

  57. Ye P, Wang ZJ, Zhang XJ, Zhao YL (2005) Age-related decrease in expression of peroxisome proliferator-activated receptor α(and its effects on development of dyslipidemia. Chin Med J (Engl) 118:1093–1098

    CAS  Google Scholar 

  58. Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M, Yamaguchi I (2002) Aging-induced decrease in the PPAR-α level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol 283:1750–1760

    Google Scholar 

  59. Gelinas DS, McLaurin J (2005) PPAR-α expression inversely correlates with inflammatory cytokines IL-1β and TNF-α in aging rats. Neurochem Res 30:1369–1375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiko Sugiyama.

About this article

Cite this article

Li, Y., Sugiyama, E., Yokoyama, S. et al. Molecular Mechanism of Age-Specific Hepatic Lipid Accumulation in PPARα (+/−):LDLR (+/−) Mice, an Obese Mouse Model. Lipids 43, 301–312 (2008). https://doi.org/10.1007/s11745-008-3161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3161-x

Keywords

Navigation