Skip to main content
Log in

Identification of Lysophosphatidylcholine–Chlorohydrin in Human Atherosclerotic Lesions

  • Communication
  • Published:
Lipids

Abstract

Lysophosphatidylcholine (LysoPtdCho) levels are elevated in sera in patients with atherosclerosis and in atherosclerotic tissue. Previous studies have shown that reactive chlorinating species attack plasmalogens in human coronary artery endothelial cells (HCAEC), forming lysoPtdCho and lysoPtdCho–chlorohydrin (lysoPtdCho–ClOH). The results herein demonstrate for the first time that lysoPtdCho–ClOH is elevated over 60-fold in human atherosclerotic lesions. In cultured HCAEC, 18:0 lysoPtdCho–ClOH led to a statistically significant increase in P-selectin cell-surface expression, but unlike 18:1 lysoPtdCho did not lead to cyclooxygenase-2 protein expression. These data show that 18:0 lysoPtdCho–ClOH is elevated in atherosclerotic tissue and may have unique pro-atherogenic properties compared to lysoPtdCho.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Abbreviations

RCS:

Reactive chlorinating species

LysoPtdCho:

Lysophosphatidylcholine

ClOH:

Chlorohydrin

lysoPtdCho–ClOH:

Lysophosphatidylcholine–chlorohydrin

PtdCho–ClOH:

Phosphatidylcholine–chlorohydrin

FFA–ClOH:

Free fatty acid chlorohydrin

HCAEC:

Human coronary artery endothelial cells

MPO:

Myeloperoxidase

GC–MS:

Gas chromatography–mass spectrometry

ESI–MS:

Electrospray ionization–mass spectrometry

HOCl:

Hypochlorous acid

LDL:

Low-density lipoprotein

2-ClHDA:

2-chlorohexadecanal

References

  1. Portman OW, Alexander M (1969) Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis. J Lipid Res 10:158–165

    PubMed  CAS  Google Scholar 

  2. Hara A, Taketomi T (1990) Characterization and change of phospholipids in the aorta of Watanabe hereditable hyperlipidemic rabbit. Jpn J Exp Med 60:311–318

    PubMed  CAS  Google Scholar 

  3. Thukkani AK, McHowat J, Hsu FF, Brennan ML, Hazen SL, Ford DA (2003) Identification of alphachloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 108:3128–3133

    Article  PubMed  CAS  Google Scholar 

  4. Chakraborti S (2003) Phospholipase A(2) isoforms: a perspective. Cell Signal 15:637–665

    Article  PubMed  CAS  Google Scholar 

  5. Sasagawa T, Suzuki K, Shiota T, Kondo T, Okita M (1998) The significance of plasma lysophospholipids in patients with renal failure on hemodialysis. J Nutr Sci Vitaminol (Tokyo) 44:809–818

    CAS  Google Scholar 

  6. Iwase M, Yamada Y, Uemura H, Nakaya H, Takatori T, Nagao M, Iwadate K (1997) Effect of monochlorohydrins of linoleic acid on guinea pig cardiac papillary muscles. Biochem Biophys Res Comm 231:295–298

    Article  PubMed  CAS  Google Scholar 

  7. Okita M, Gaudette DC, Mills GB, Holub BJ (1997) Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine(lysoPC) in ovarian cancer patients. Int J Cancer 71:31–34

    Article  PubMed  CAS  Google Scholar 

  8. Mehta D, Gupta S, Gaur SN, Gangal SV, Agrawal KP (1990) Increased leukocyte phospholipase A2 activity and plasma lysophosphatidylcholine levels in asthma and rhinitis and their relationship to airway sensitivity to histamine. Am Rev Respir Dis 142:157–161

    PubMed  CAS  Google Scholar 

  9. Lavi S, McConnell JP, Rihal CS, Prasad A, Mathew V, Lerman LO, Lerman A (2007) Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation: association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation 115:2715–2721

    Article  PubMed  CAS  Google Scholar 

  10. Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  CAS  Google Scholar 

  11. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444

    PubMed  CAS  Google Scholar 

  12. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99:2075–2081

    Article  PubMed  CAS  Google Scholar 

  13. Jerlich A, Pitt AR, Schaur RJ, Spickett CM (2000) Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS. Free Radic Biol Med 28:673–682

    Article  PubMed  CAS  Google Scholar 

  14. Dever G, Stewart LJ, Pitt AR, Spickett CM (2003) Phospholipid chlorohydrins cause ATP depletion and toxicity in human myeloid cells. FEBS Lett 540:245–250

    Article  PubMed  CAS  Google Scholar 

  15. Dever G, Wainwright CL, Kennedy S, Spickett CM (2006) Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion. Acta Biochim Pol 53:761–768

    PubMed  CAS  Google Scholar 

  16. Dever GJ, Benson R, Wainwright CL, Kennedy S, Spickett CM (2007) Phospholipid chlorohydrin induces leukocyte adhesion to ApoE−/− mouse arteries via upregulation of P-selectin. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2007.10.038

  17. Carr AC, Vissers MC, Domigan NM, Winterbourn CC (1997) Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins. Redox Rep 3:263–271

    PubMed  CAS  Google Scholar 

  18. Vissers MC, Carr AC, Winterbour CC (2001) Fatty acid chlorohydrins and bromohydrins are cytotoxic to human endothelial cells. Redox Rep 6:49–55

    Article  PubMed  CAS  Google Scholar 

  19. Vance JE (1990) Lipoproteins secreted by cultured rat hepatocytes contain the antioxidant 1-alk-1-enyl-2-acylglycerophosphoethanolamine. Biochim Biophys Acta 1045:128–134

    PubMed  CAS  Google Scholar 

  20. Thukkani AK, Hsu FF, Crowley JR, Wysolmerski RB, Albert CJ, Ford DA (2002) Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens: production of the chemoattractant, 2-chlorohexadecanal. J Biol Chem 277:3842–3849

    Article  PubMed  CAS  Google Scholar 

  21. Lessig J, Schiller J, Arnhold J, Fuchs B (2007) Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J Lipid Res 48:1316–1324

    Article  PubMed  CAS  Google Scholar 

  22. Messner MC, Albert CJ, Hsu FF, Ford DA (2006) Selective plasmenylcholine oxidation by hypochlorous acid: formation of lysophosphatidylcholine chlorohydrins. Chem Phys Lipids 144:34–44

    PubMed  CAS  Google Scholar 

  23. Panasenko OM, Vakhrusheva T, Tretyakov V, Spalteholz H, Arnhold J (2007) Influence of chloride on modification of unsaturated phosphatidylcholines by the myeloperoxidase/hydrogen peroxide/bromide system. Chem Phys Lipids 149:40–51

    Article  PubMed  CAS  Google Scholar 

  24. Han XL, Zupan LA, Hazen SL, Gross RW (1992) Semisynthesis and purification of homogeneous plasmenylcholine molecular species. Anal Biochem 200:119–124

    Article  PubMed  CAS  Google Scholar 

  25. Hazen SL, Hsu FF, Duffin K, Heinecke JW (1996) Molecular chlorine generated by the myeloperoxidasehydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J Biol Chem 271:23080–23088

    Article  PubMed  CAS  Google Scholar 

  26. Thomas EL, Fishman M (1986) Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem 261:9694–9702

    PubMed  CAS  Google Scholar 

  27. Dittmer JC, Douglas MG (1969) Quantitative determination of phosphoinositides. Ann NY Acad Sci 165:515–525

    PubMed  CAS  Google Scholar 

  28. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  29. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  PubMed  CAS  Google Scholar 

  30. Willam C, Schindler R, Frei U, Eckardt KU (1999) Increases in oxygen tension stimulate expression of ICAM-1 and VCAM-1 on human endothelial cells. Am J Physiol 276:H2044–H2052

    PubMed  CAS  Google Scholar 

  31. Panasenko OM, Spalteholz H, Schiller J, Arnhold J (2003) Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic Biol Med 34:553–562

    Article  PubMed  CAS  Google Scholar 

  32. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  33. Kougias P, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C (2006) Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: mediators of endothelial dysfunction and atherosclerosis. Med Sci Monit 12:RA5–RA16

    PubMed  CAS  Google Scholar 

  34. Ley K, Reutershan J (2006) Leucocyte-endothelial interactions in health and disease. Handb Exp Pharmacol 97–133

  35. Blann AD, Nadar SK, Lip GY (2003) The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J 24:2166–2179

    Article  PubMed  CAS  Google Scholar 

  36. Masferrer JL, Seibert K, Zweifel B, Needleman P (1992) Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci USA 89:3917–3921

    Article  PubMed  CAS  Google Scholar 

  37. Kraemer SA, Meade EA, DeWitt DL (1992) Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional start site and 5′-flanking regulatory sequences. Arch Biochem Biophys 293:391–400

    Article  PubMed  CAS  Google Scholar 

  38. Schonbeck U, Sukhova GK, Graber P, Coulter S, Libby P (1999) Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 155:1281–1291

    PubMed  CAS  Google Scholar 

  39. Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM (1993) Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 268:9049–9054

    PubMed  CAS  Google Scholar 

  40. Vane JR, Botting RM (1995) Pharmacodynamic profile of prostacyclin. Am J Cardiol 75:3A–10A

    Article  PubMed  CAS  Google Scholar 

  41. Kirtikara K, Raghow R, Laulederkind SJ, Goorha S, Kanekura T, Ballou LR (2000) Transcriptional regulation of cyclooxygenase-2 in the human microvascular endothelial cell line, HMEC-1: control by the combinatorial actions of AP2, NF-IL-6 and CRE elements. Mol Cell Biochem 203:41–51

    Article  PubMed  CAS  Google Scholar 

  42. Zembowicz A, Jones SL, Wu KK (1995) Induction of cyclooxygenase-2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J Clin Invest 96:1688–1692

    PubMed  CAS  Google Scholar 

  43. Rikitake Y, Hirata K, Kawashima S, Takeuchi S, Shimokawa Y, Kojima Y, Inoue N, Yokoyama M (2001) Signaling mechanism underlying COX-2 induction by lysophosphatidylcholine. Biochem Biophys Res Commun 281:1291–1297

    Article  PubMed  CAS  Google Scholar 

  44. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158:879–891

    PubMed  CAS  Google Scholar 

  45. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Inv 99:2075–2081

    CAS  Google Scholar 

  46. Albert CJ, Crowley JR, Hsu FF, Thukkani AK, Ford DA (2001) Reactive chlorinating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: identification of 2-chlorohexadecanal. J Biol Chem 276:23733–23741

    Article  PubMed  CAS  Google Scholar 

  47. Ueno N, Takegoshi Y, Kamei D, Kudo I, Murakami M (2005) Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem Biophys Res Commun 338:70–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ford.

About this article

Cite this article

Messner, M.C., Albert, C.J., McHowat, J. et al. Identification of Lysophosphatidylcholine–Chlorohydrin in Human Atherosclerotic Lesions. Lipids 43, 243–249 (2008). https://doi.org/10.1007/s11745-008-3151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3151-z

Keywords

Navigation