Skip to main content
Log in

Effects of Dehydroepiandrosterone (DHEA) on Hepatic Lipid Metabolism Parameters and Lipogenic Gene mRNA Expression in Broiler Chickens

  • Original Article
  • Published:
Lipids

Abstract

The aim of the present study was to identify the effects of dehydroepiandrosterone (DHEA) on hepatic lipid metabolism parameters and lipogenic gene mRNA expression in broiler chickens. A total of 72 1-day-old broiler chicks received a common basal diet with DHEA added at either 0 (control), 5 or 20 mg/kg feed. In the present study, the hepatic triglyceride (TG) concentration was significantly lower in male and female broilers that had bed administered DHEA than in control birds. In contrast, DHEA administration caused a marked rise in the hepatic non-esterified fatty acid (NEFA) concentration in both male and female broilers and also increased lipase (HL) activity in male broilers, while in female birds, no significant differences were observed in HL activity. The expression of peroxisome proliferators-activated receptor α (PPARα) and carnitine palmitoyl transferase I (CPTI) mRNA was decidedly enhanced following treatment with DHEA, and a similar tendency was also observed in the expression of acyl-Coenzyme A oxidase 1 (ACOX1). However, no significant differences were observed in the expression of either sterol regulatory element binding protein-1c (SREBP-1c) or acetyl CoA carboxylase (ACC) mRNA, except for a decline in the expression of ACC in females treated with 5 mg DHEA/kg. Numerous peroxisomes without a core and an increased number of peroxisomes were evident during morphological observations of broiler livers, in animals that had been treated with DHEA. Overall, the results of the present study indicated that DHEA accelerated lipid catabolism by direct regulation of hepatic lipid metabolism and by induction of relevant gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Acetyl CoA carboxylase

ACOX1:

Acyl-Coenzyme A oxidase 1

CPTI:

Carnitine palmitoyl transferase I

DHEA:

Dehydroepiandrosterone

HL:

Hepatic lipase

NEFA:

Non-esterified fatty acids

PPARα:

Peroxisome proliferators-activated receptor α

SREBP-1c:

Sterol regulatory element binding protein-1c

TG:

Triglyceride

References

  1. Mallard J, Douaire M (1988) Strategies of selection for leanness in meat production. In: Leanness in domestic birds: genetic, metabolic and hormonal aspects, Butterworth-Heinemann, Oxford

  2. Wu GQ, Deng XM, Li JY, Li JY, Yang N (2006) A potential molecular marker for selection against abdominal fatness in chickens. Poult Sci 85:1896–1899

    PubMed  CAS  Google Scholar 

  3. Wang Q, Li H, Li N, Leng L, Wang Y, Tang Z (2006) Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult Sci 85:429–434

    PubMed  CAS  Google Scholar 

  4. Xu ZR, Wang MQ, Mao HX, Zhan XA, Hu CH (2003) Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poult Sci 82:408–413

    PubMed  CAS  Google Scholar 

  5. Szabo A, Febel H, Mezes M, Horn P, Balogh K, Romvari R (2005) Differential utilization of hepatic and myocardial fatty acids during forced molt of laying hens. Poult Sci 84:106–112

    PubMed  CAS  Google Scholar 

  6. Orentreich N, Brind JL, Vogelman JH, Andres R, Baldwin H (1992) Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocrinol Metab 75:1002–1004

    Article  PubMed  CAS  Google Scholar 

  7. Parker CR (1999) Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging. Steroids 64:640–647

    Article  PubMed  CAS  Google Scholar 

  8. Arlt W (2004) Dehydroepiandrosterone replacement therapy. J Semin Rep rod Med 22:379–388

    Article  CAS  Google Scholar 

  9. Yamada J, Sakuma M, Ikeda T, Fukuda K, Suga T (1991) Characteristics of dehydroepiandrosterone as a peroxisome proliferators. Biochim Biophys Acta 1092:233–243

    Article  PubMed  CAS  Google Scholar 

  10. Sakuma M, Yamada J, Suga T (1993) Induction of peroxisomal β-oxidation by structural analogues of dehydroepiandrosterone in cultured rat hepatocytes: structure–activity relationships. Biochim Biophys Acta 1169:66–72

    PubMed  CAS  Google Scholar 

  11. Suga T, Tamura H, Watanabe T, Yamada J (1996) Induction of peroxisomal enzymes by dehydroepiandrosterone metabolic activation by sulfate conjugation. N Y Acad Sci 804:284–296

    Article  CAS  Google Scholar 

  12. Waxman DJ (1996) Role of metabolism in the activation of dehydroepiandrosterone as a peroxisome proliferator. J Endocrinol 150:129–147

    Article  Google Scholar 

  13. O’Hea EK, Leveille GA (1969) Lipogenesis in isolated adipose tissue of domestic chick (Gallus domesticus). Comp Biochem Physiol 26:111–120

    Google Scholar 

  14. Frenkel B, Mayorek N, Hertz R, Bar-Tana J (1988) The hypochylomicronemic effect of beta, beta’-methyl-substituted hexadecanedioic acid (MEDICA 16) is mediated by a decrease in apolipoprotein C-III. J Biol Chem 263:8491–8497

    PubMed  CAS  Google Scholar 

  15. Frenkel B, Bisbara-Shieban J, Bar-Tana J (1994) The effect of beta, beta-tetramethylhexadecanedioic acid (MEDICA 16) on plasma very-low-density lipoprotein metabolism in rats: role of apolipoprotein C-III. Biochem J 298:409–414

    PubMed  CAS  Google Scholar 

  16. Leclercq B, Hermier D, Guy G (1990) Metabolism of very low density lipoproteins in genetically lean or fat lines of chicken. Reprod Nutr Dev 30:701–715

    Article  PubMed  CAS  Google Scholar 

  17. Legrand P, Hermier D (1992) Hepatic delta 9 desaturation and plasma VLDL level in genetically lean and fat chickens. Int J Obes Relat Metab Disord 16:289–294

    PubMed  CAS  Google Scholar 

  18. Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, Flamant F, Mallard J (1992) Identifying genes involved in fatness genetic variability in the growing chicken. Poultry Sci 71:1911–1920

    CAS  Google Scholar 

  19. Daval S, Lagarrigue S, Douaire M (2000) Messenger RNA levels and transcription rates of hepatic lipogenesis genes in genetically lean and fat chickens. Genet Sel Evol 32:521–531

    Article  PubMed  CAS  Google Scholar 

  20. Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37:907–925

    PubMed  CAS  Google Scholar 

  21. Kochan Z, Karbowska J (2004) Dehydroepiandrosterone upregulates resistin gene expression in white adipose tissue. Mol Cell Endocrinol 218:57–64

    Article  PubMed  CAS  Google Scholar 

  22. Yang CM, Chen AG, Hong QH, Liu JX, Liu JS (2006) Effects of cysteamine on growth performance, digestive enzyme activities, and metabolic hormones in broilers. Poult Sci 85:1912–1916

    PubMed  CAS  Google Scholar 

  23. Folch J, Lee M, Slane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  24. Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  25. Ikeda T, Ida-Enomoto M, Mori I, Fukuda K, Iwabuchi H, Komai T, Suga T (1988) Induction of peroxisome proliferation in rat liver by dietary treatment with 2,2,4,4,6,8,8-heptamethylnonane. Xenobiotica 18:1271–1280

    Article  PubMed  CAS  Google Scholar 

  26. Gansler TS, Muller S, Cleary MP (1985) Chronic administration of dehydroepiandrosterone reduces pancreatic β-cell hyperplasia and hyperinsulinemia in genetically obese Zucker rats. Proc Soc Exp Biol Med 180:155–162

    PubMed  CAS  Google Scholar 

  27. Bobyleva V, Kneer N, Bellei M, Battelli D, Muscatello U, Lardy H (1993) Comparative studies of effects of dehydroepiandrosterone on rat and chicken liver. Comp Biochem Physiol B 105:643–647

    Article  PubMed  CAS  Google Scholar 

  28. Cleary MP, Zisk JF (1986) Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats. Int J Obes 10:193–204

    PubMed  CAS  Google Scholar 

  29. Villareal DT, Holloszy JO (2004) Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA 292:2243–2248

    Article  PubMed  CAS  Google Scholar 

  30. Prough RA, Webb SJ, Wu HQ, Lapenson DP, Waxman DJ (1994) Induction of microsomal and peroxisomal enzymes by dehydroepiandrosterone and its reduced metabolite in rat. Cancer Res 54:2878–2886

    PubMed  CAS  Google Scholar 

  31. Kinnunen PKJ, Virtanen JA, Vainio P (1983) Lipoprotein lipase and hepatic endothelial lipase: their roles in plasma lipoprotein metabolism. Atheroscler Rev 11:65–105

    CAS  Google Scholar 

  32. Herbst KL, Amory JK, Brunzell JD, Chansky HA, Bremner WJ (2003) Testosterone administration to men increases hepatic lipase activity and decreases HDL and LDL size in 3 wk. Am J Physiol Endocrinol Metab 284:E1112–E1118

    PubMed  CAS  Google Scholar 

  33. Knight BL, Hebbachi A, Huaton D, Brown AM, Wiggins D, Patel DD, Gibbons GF (2005) A role for PPARα in the control of SREBP activity and lipid synthesis in the liver. Biochem J 389:413–421

    Article  PubMed  CAS  Google Scholar 

  34. Yin L, Zhang Y, Hillgartner FB (2002) Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase-alpha transcription in hepatocytes. J Biol Chem 277:19554–19565

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Yin L, Hillgartner FB (2003) SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res 44:356–368

    Article  PubMed  CAS  Google Scholar 

  36. Ishii H, Ishii S, Suga T, Kazama M (1985) Developmental changes in the activities of peroxisomal and mitochondrial β-oxidation in chicken liver. Arch Biochem Biophys 237:151–159

    Article  PubMed  CAS  Google Scholar 

  37. Ding ST, Li YC, Nestor KE, Velleman SG, Mersmann HJ (2003) Expression of turkey transcription factors and acyl-coenzyme oxidase in different tissues and genetic populations. Poult Sci 82:17–24

    PubMed  CAS  Google Scholar 

  38. Bell AR, Savory R, Horley NJ, Choudhury AI, Dickins M, Gray TJ, Salter AM, Bell DR (1998) Molecular basis of non-responsiveness to peroxisome proliferators: the guinea-pig PPARalpha is functional and mediates peroxisome proliferator-induced hypolipidaemia. Biochem J 332:689–693

    PubMed  CAS  Google Scholar 

  39. Dreyer C, Krey G, Keeler H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    Article  PubMed  CAS  Google Scholar 

  40. Zhang B, Marcus SL, Sajjadi FG, Alvares K, Reddy JK (1992) Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydrase/3-hydroxyacyl-CoA dehydrogenase. Proc Natl Acad Sci 89:7541–7545

    Article  PubMed  CAS  Google Scholar 

  41. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    Article  PubMed  CAS  Google Scholar 

  42. Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA (1992) Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol 6:1634–1641

    Article  PubMed  CAS  Google Scholar 

  43. Zammit VA (1999) Carnitine acltransferases:functional significance of subcellular distribution and membrane topology. Prog Lipid Res 38:199–224

    Article  PubMed  CAS  Google Scholar 

  44. Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302:93–109

    PubMed  CAS  Google Scholar 

  45. Dyck JR, Barr AJ, Barr RL Kolattukudy PE, Lopaschuk GD (1998) Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol 275:2122–2129

    Google Scholar 

  46. Velasco G, Gomez del Pulgar T, Carling D, Guzman M (1998) Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components. FEBS Lett 439:317–320

    Article  PubMed  CAS  Google Scholar 

  47. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304

    PubMed  CAS  Google Scholar 

  48. Velasco G, Geelen MJ, Guzman M (1997) Control of hepatic fatty acid oxidation by 5 P-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl CoA-independent mechanism. Arch Biochem Biophys 337:169–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NO.30600439) and the National Key Basic Research Development Program of China, 973 Program (NO. 2004CB117505). We are also grateful to Dr. Dongmin Liu Assistant Professor, Human Nutrition, Food and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA and Dr. William W. Riley, Research Director in Feed and Grow International CO, Ltd., for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitian Ma.

About this article

Cite this article

Tang, X., Ma, H., Zou, S. et al. Effects of Dehydroepiandrosterone (DHEA) on Hepatic Lipid Metabolism Parameters and Lipogenic Gene mRNA Expression in Broiler Chickens. Lipids 42, 1025–1033 (2007). https://doi.org/10.1007/s11745-007-3104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3104-y

Keywords

Navigation