Skip to main content
Log in

Synergistic Antiproliferative Effects of γ-Tocotrienol and Statin Treatment on Mammary Tumor Cells

  • Original Article
  • Published:
Lipids

Abstract

Statins are potent inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase and display anticancer activity, but their clinical use is limited by their high-dose toxicity. Similarly, γ-tocotrienol, an isoform of vitamin E, also reduces HMGCoA reductase activity and displays potent anticancer activity. Studies were conducted to determine if combined low dose treatment of γ-tocotrienol with individual statins resulted in a synergistic antiproliferative effect on neoplastic mouse +SA mammary epithelial cells. Treatment with 3–4 μM γ-tocotrienol or 2–8 μM simvastatin, lovastatin or mevastatin alone resulted in a significant decrease, whereas treatment with 10–100 μM pravastatin had no effect on +SA cell growth. However, combined treatment of subeffective doses (0.25 or 10 μM) of individual statins with 0.25–2.0 μM γ-tocotrienol resulted in a dose-responsive synergistic inhibition in +SA cell proliferation. Additional studies showed that treatment with subeffective doses of individual statins or γ-tocotrienol alone had no effect, whereas combined treatment of these compounds resulted in a relatively large decrease in intracellular levels of phosphorylated (activated) MAPK, JNK, p38, and Akt. These findings strongly suggest that combined low dose treatment of γ-tocotrienol with individual statins may have potential value in the treatment of breast cancer without causing myotoxicity that is associated with high dose statin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graaf MR, Richel DJ, van Noorden CJ, Guchelaar HJ (2004) Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev 30:609–641

    Article  PubMed  CAS  Google Scholar 

  2. Habenicht AJ, Glomset JA, Ross R (1980) Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 255:5134–5140

    PubMed  CAS  Google Scholar 

  3. Fairbanks KP, Witte LD, Goodman DS (1984) Relationship between mevalonate and mitogenesis in human fibroblasts stimulated with platelet-derived growth factor. J Biol Chem 259:1546–1551

    PubMed  CAS  Google Scholar 

  4. Kaneko I, Hazama-Shimada Y, Endo A (1978) Inhibitory effects on lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Eur J Biochem 87:313–321

    Article  PubMed  CAS  Google Scholar 

  5. Quesney-Huneeus V, Galick HA, Siperstein MD, Erickson SK, Spencer TA, Nelson JA (1983) The dual role of mevalonate in the cell cycle. J Biol Chem 258:378–385

    PubMed  CAS  Google Scholar 

  6. Maltese WA, Defendini R, Green RA, Sheridan KM, Donley DK (1985) Suppression of murine neuroblastoma growth in vivo by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Clin Invest 76:1748–1754

    Article  PubMed  CAS  Google Scholar 

  7. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, Baehner F, Kumar AS, Adduci K, Marx C, Petricoin EF, Liotta LA, Winters M, Benz S, Benz CC (2006) Breast cancer growth prevention by statins. Cancer Res 66:8707–8714

    Article  PubMed  CAS  Google Scholar 

  8. Seeger H, Wallwiener D, Mueck AO (2003) Statins can inhibit proliferation of human breast cancer cells in vitro. Exp Clin Endocrinol Diabetes 111:47–48

    Article  PubMed  CAS  Google Scholar 

  9. Shibata MA, Ito Y, Morimoto J, Otsuki Y (2004) Lovastatin inhibits tumor growth and lung metastasis in mouse mammary carcinoma model: a p53-independent mitochondrial-mediated apoptotic mechanism. Carcinogenesis 25:1887–1898

    Article  PubMed  CAS  Google Scholar 

  10. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, Trepel J, Liang B, Patronas N, Venzon DJ, Reed E, Myers CE (1996) Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 2:483–491

    PubMed  CAS  Google Scholar 

  11. McIntyre BS, Briski KP, Gapor A, Sylvester PW (2000) Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells. Proc Soc Exp Biol Med 224:292–301

    Article  PubMed  CAS  Google Scholar 

  12. Shah S, Sylvester PW (2004) Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells. Exp Biol Med (Maywood) 229:745–755

    CAS  Google Scholar 

  13. Samant GV, Sylvester PW (2006) gamma-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells. Cell Prolif 39:563–574

    Article  PubMed  CAS  Google Scholar 

  14. McIntyre BS, Briski KP, Tirmenstein MA, Fariss MW, Gapor A, Sylvester PW (2000) Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells. Lipids 35:171–180

    Article  PubMed  CAS  Google Scholar 

  15. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ (1993) Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 268:11230–11238

    PubMed  CAS  Google Scholar 

  16. Danielson KG, Anderson LW, Hosick HL (1980) Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo. Cancer Res 40:1812–1819

    PubMed  CAS  Google Scholar 

  17. Shah SJ, Sylvester PW (2005) Gamma-tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity. Exp Biol Med (Maywood) 230:235–241

    CAS  Google Scholar 

  18. Shah S, Gapor A, Sylvester PW (2003) Role of caspase-8 activation in mediating vitamin E-induced apoptosis in murine mammary cancer cells. Nutr Cancer 45:236–246

    Article  PubMed  CAS  Google Scholar 

  19. Sylvester PW, Birkenfeld HP, Hosick HL, Briski KP (1994) Fatty acid modulation of epidermal growth factor-induced mouse mammary epithelial cell proliferation in vitro. Exp Cell Res 214:145–153

    Article  PubMed  CAS  Google Scholar 

  20. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  21. Chou TC, Tan QH, Sirotnak FM (1993) Quantitation of the synergistic interaction of edatrexate and cisplatin in vitro. Cancer Chemother Pharmacol 31:259–264

    Article  PubMed  CAS  Google Scholar 

  22. Ajith TA, Harikumar KB, Thasna H, Sabu MC, Babitha NV (2006) Proapoptotic and antitumor activities of the HMG-CoA reductase inhibitor, lovastatin, against Dalton’s lymphoma ascites tumor in mice. Clin Chim Acta 366:322–328

    Article  PubMed  CAS  Google Scholar 

  23. Cerezo-Guisado MI, Alvarez-Barrientos A, Argent R, Garcia-Marin LJ, Bragado MJ, Lorenzo MJ (2007) c-Jun N-terminal protein kinase signalling pathway mediates lovastatin-induced rat brain neuroblast apoptosis. Biochim Biophys Acta 1771:164–176

    PubMed  CAS  Google Scholar 

  24. Koyuturk M, Ersoz M, Altiok N (2006) Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett. doi:10.1016/j.canlet.2006.10.009

  25. Marcelli M, Cunningham GR, Haidacher SJ, Padayatty SJ, Sturgis L, Kagan C, Denner L (1998) Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res 58:76–83

    PubMed  CAS  Google Scholar 

  26. Shellman YG, Ribble D, Miller L, Gendall J, Vanbuskirk K, Kelly D, Norris DA, Dellavalle RP (2005) Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Res 15:83–89

    Article  PubMed  CAS  Google Scholar 

  27. Mueck AO, Seeger H, Wallwiener D (2003) Effect of statins combined with estradiol on the proliferation of human receptor-positive and receptor-negative breast cancer cells. Menopause 10:332–336

    Article  PubMed  Google Scholar 

  28. van Vliet AK, Negre-Aminou P, van Thiel GC, Bolhuis PA, Cohen LH (1996) Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle. Biochem Pharmacol 52:1387–1392

    Article  PubMed  Google Scholar 

  29. Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K (1999) Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci USA 96:7797–7802

    Article  PubMed  CAS  Google Scholar 

  30. Efuet ET, Keyomarsi K (2006) Farnesyl and geranylgeranyl transferase inhibitors induce G1 arrest by targeting the proteasome. Cancer Res 66:1040–1051

    Article  PubMed  CAS  Google Scholar 

  31. Bocci G, Fioravanti A, Orlandi P, Bernardini N, Collecchi P, Del Tacca M, Danesi R (2005) Fluvastatin synergistically enhances the antiproliferative effect of gemcitabine in human pancreatic cancer MIAPaCa-2 cells. Br J Cancer 93:319–330

    Article  PubMed  CAS  Google Scholar 

  32. Duncan RE, El-Sohemy A, Archer MC (2005) Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett 224:221–228

    Article  PubMed  CAS  Google Scholar 

  33. Kozar K, Kaminski R, Legat M, Kopec M, Nowis D, Skierski JS, Koronkiewicz M, Jakobisiak M, Golab J (2004) Cerivastatin demonstrates enhanced antitumor activity against human breast cancer cell lines when used in combination with doxorubicin or cisplatin. Int J Oncol 24:1149–1157

    PubMed  CAS  Google Scholar 

  34. Mantha AJ, Hanson JE, Goss G, Lagarde AE, Lorimer IA, Dimitroulakos J (2005) Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin Cancer Res 11:2398–2407

    Article  PubMed  CAS  Google Scholar 

  35. Mantha AJ, McFee KE, Niknejad N, Goss G, Lorimer IA, Dimitroulakos J (2003) Epidermal growth factor receptor-targeted therapy potentiates lovastatin-induced apoptosis in head and neck squamous cell carcinoma cells. J Cancer Res Clin Oncol 129:631–641

    Article  PubMed  CAS  Google Scholar 

  36. Soma MR, Pagliarini P, Butti G, Paoletti R, Paoletti P, Fumagalli R (1992) Simvastatin, an inhibitor of cholesterol biosynthesis, shows a synergistic effect with N,N′-bis(2-chloroethyl)-N-nitrosourea and beta-interferon on human glioma cells. Cancer Res 52:4348–4355

    PubMed  CAS  Google Scholar 

  37. McAnally JA, Gupta J, Sodhani S, Bravo L, Mo H (2007) Tocotrienols potentiate lovastatin-mediated growth suppression in vitro and in vivo. Exp Biol Med (Maywood) 232:523–531

    CAS  Google Scholar 

  38. Sylvester PW, Nachnani A, Shah S, Briski KP (2002) Role of GTP-binding proteins in reversing the antiproliferative effects of tocotrienols in preneoplastic mammary epithelial cells. Asia Pac J Clin Nutr 11(suppl 7):S452–S459

    Article  PubMed  CAS  Google Scholar 

  39. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164

    Article  PubMed  CAS  Google Scholar 

  40. Brown MS, Faust JR, Goldstein JL, Kaneko I, Endo A (1978) Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem 253:1121–1128

    PubMed  CAS  Google Scholar 

  41. Bassa BV, Roh DD, Vaziri ND, Kirschenbaum MA, Kamanna VS (1999) Effect of inhibition of cholesterol synthetic pathway on the activation of Ras and MAP kinase in mesangial cells. Biochim Biophys Acta 1449:137–149

    Article  PubMed  CAS  Google Scholar 

  42. Casey PJ, Solski PA, Der CJ, Buss JE (1989) p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 86:8323–8327

    Article  PubMed  CAS  Google Scholar 

  43. Nakagawa H, Mutoh T, Kumano T, Kuriyama M (1998) HMG-CoA reductase inhibitor-induced L6 myoblast cell death: involvement of the phosphatidylinositol 3-kinase pathway. FEBS Lett 438:289–292

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed at the College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA and supported in part by National Institutes of Health Grant CA 86833. The authors would like to thank the Malaysian Palm Oil Board and Carotech Bhd. for their support in generously providing γ-tocotrienol for use in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Sylvester.

About this article

Cite this article

Wali, V.B., Sylvester, P.W. Synergistic Antiproliferative Effects of γ-Tocotrienol and Statin Treatment on Mammary Tumor Cells. Lipids 42, 1113–1123 (2007). https://doi.org/10.1007/s11745-007-3102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3102-0

Keywords

Navigation