Skip to main content
Log in

Effects of In Ovo Administration of DHEA on Lipid Metabolism and Hepatic Lipogenetic Genes Expression in Broiler Chickens During Embryonic Development

  • Original Article
  • Published:
Lipids

Abstract

In order to study the mechanism of DHEA (Dehydroepiandrosterone) in reducing fat in broiler chickens during embryonic development, fertilized eggs were administrated with DHEA before incubation and its effect on lipid metabolism and expression of hepatic lipogenetic genes was investigated. The mRNA levels of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), malic enzyme (ME), apolipoprotein B100 (apoB100) and sterol regulator element binding protein-1c (SREBP-1c) were determined using real time quantitative PCR. Samples of livers were collected from the chickens on days 9, 14, and 19 of embryonic development as well as at hatching. Blood samples were extracted on days 14, 19 of incubation and at hatching. The results showed that DHEA decreased the concentration of triacyglycerol in the blood and the content in liver, and the mRNA levels of ACC, FAS, ME, SREBP-1c and apoB. This suggested that DHEA decreased the expression of hepatic lipogenetic genes and suppressed triglycerols transport, by which it reduced the deposition of fat in adipose tissue in broiler chickens during embryonic development and hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leveille GA (1969) In vitro hepatic lipogenesis in the hen and chick. Comp Biochem Physiol 28:431–435

    Article  PubMed  CAS  Google Scholar 

  2. Pearce J (1977) Some differences between avian and mammalian biochemistry. Int J Biochem 8:269–275

    Article  CAS  Google Scholar 

  3. O’Hea EK, Leveille GA (1969) Lipogenesis in isolated adipose tissue of domestic chick (Gallus domesticus). Comp Biochem Physiol 26:111–120

    Google Scholar 

  4. Noyan M, Lossow WJ, Brot N, Chaikoff IL (1964) Pathway and form of absorption of palmitic acid in the chicken. J Lipid Res 5:538–541

    PubMed  CAS  Google Scholar 

  5. Bensadoun A, Rothfeld A (1972) The form of absorption of lipids in the chicken Gallus domesticus. Proc Soc Exp Biol Med 141:814–817

    PubMed  CAS  Google Scholar 

  6. Saadoun A, Leclercq B (1983) Comparison of in vivo fatty acid synthesis of the genetically lean and fat chickens. Comp Biochem Physiol B 75:641–644

    Article  PubMed  CAS  Google Scholar 

  7. Hermier D, Chapman MJ (1985) Lipoprotein plasmatiques et engraissement: description d’un modele chez le poulet domestique Gallus domesticus. Reprod Nutr Dev 25:235–241

    PubMed  CAS  Google Scholar 

  8. Leclercq B, Hermier D, Guy G (1990) Metabolism of very low density lipoproteins in genetically lean or fat lines of chicken. Reprod Nutr Dev 30:701–715

    PubMed  CAS  Google Scholar 

  9. Legrand P, Hermier D (1992) Hepatic delta 9 desaturation and plasma VLDL level in genetically lean and fat chickens. Int J Obes Relat Metab Disord 16:289–294

    PubMed  CAS  Google Scholar 

  10. Douaire M, Le Fur N, el Khadir-Mounier C, Langlois P, Flamant F, Mallard J (1992) Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult Sci 71:1911–1920

    PubMed  CAS  Google Scholar 

  11. Daval S, Lagarrigue S, Douaire M (2000) Messenger RNA levels and transcription rates of hepatic lipogenesis genes in genetically lean and fat chickens. Genet Sel Evol 32:521–531

    Article  PubMed  CAS  Google Scholar 

  12. McGarry JD, Takabayashi Y, Foster DW (1978) The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem 253:8294–8300

    PubMed  CAS  Google Scholar 

  13. Back DW, Goldman MJ, Fisch JE, Ochs RS, Goodridge AG (1986) The fatty acid synthase gene in avian liver: two mRNA are expressed and regulated in parallel by feeding, primarily at the level of transcription. J Biol Chem 261:4190–4197

    PubMed  CAS  Google Scholar 

  14. Hillgartner FB, Salati LM, Goodridge AG (1995) Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev 75:47–76

    PubMed  CAS  Google Scholar 

  15. Davis RA, Boogaerts JR, Borchardt RA, Malone-McNeal M, Archambault-Schexnayder J (1985) Intrahepatic assembly of very low density lipoproteins. J Biol Chem 260:14137–14144

    PubMed  CAS  Google Scholar 

  16. Boren J, Wettesten M, Rustaeus S, Anderson M, Olofsson S0 (1993) The assembly and secretion of apoB-100-containing lipoproteins. Biochem Soc Trans 21:487–493

    PubMed  CAS  Google Scholar 

  17. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  PubMed  CAS  Google Scholar 

  18. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98:1575–1584

    Article  PubMed  CAS  Google Scholar 

  19. Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al (1997) Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest 100:2115–2124

    PubMed  CAS  Google Scholar 

  20. Magana MM, Lin SS, Dooley KA, Osborne TF (1997) Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res 38:1630–1638

    PubMed  CAS  Google Scholar 

  21. Yin L, Zhuang Y, Hillgartner FB (2002) Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase-alpha transcription in hepatocytes. J Biol Chem 277:19554–19565

    Article  PubMed  CAS  Google Scholar 

  22. Zhuang Y, Yin L, Hillgartner FB (2003) SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium chain fatty acids on ACC alpha transcription in hepatocytes. J Lipid Res 44:356–368

    Article  CAS  Google Scholar 

  23. Magana MM, Koo SH, Towle HC, Osborne TF (2000) Different sterol regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase. J Biol Chem 275:4726–4733

    Article  PubMed  CAS  Google Scholar 

  24. Labrie F, Luu-The V, Belanger A, Lin SX, Simard J, Pelletier G (2005) Is dehydroepiandrosterone a hormone? J Endocrinol 187:169–196

    Article  PubMed  CAS  Google Scholar 

  25. Yen TT, Allen JA, Pearson DV, Acton J, Greenberg MM (1977) Prevention of obesity in mice by dehydroepiandrosterone. Lipids 12:409–413

    Article  PubMed  CAS  Google Scholar 

  26. Tagliaferro A, Davis JR, Truchon S, Van Hamont N (1986) Effect of dehydroepiandrosterone acetate on metabolism, body weight and composition of male and female rats. J Nutr 116:1977–1983

    PubMed  CAS  Google Scholar 

  27. Araghi-Niknam M, Ardestani SK, MOlitor Inserra P, Eskelson Cd, Watson RR (1998) Dehydroepiandrosterone (DHEA) sulfate prevents reduction in tissue vitamin E and increased lipid peroxidation due to murine retrovirus infection of aged mice. Proc Soc Exp Biol Med 218:210–217

    PubMed  CAS  Google Scholar 

  28. Barrou Z, Charru P, Lidy C (1997) Dehydroepiandrosterone (DHEA) and aging, arch. Gerontol Geriatr 4:233–241

    Article  Google Scholar 

  29. Khalil A, Lehoux JG, Wagner RJ, Lesur O, Crux S, Dupont E, Jay-Gerin JP, Wallach J, Fulop T (1998) Dehydroepiandrosterone against copper-induced lipid peroxidation in the rat. Free Radic Biol Med 22:1289–1294

    Google Scholar 

  30. Cleary MP, Billheimer J, Finan A, Sartin JL, Schwartz AG (1984) Metabolic consequences of dehydroepiandrosterone in lean and obese adult Zucker rats. Horm Metab Res 16(Suppl 1)43–46

    PubMed  Google Scholar 

  31. De Pergola G (2000) The adipose tissue metabolism: role of testosterone and Dehydroepiandrosterone. Int J Obes Relat Metab Disord 24(Suppl 2):S59–63

    PubMed  Google Scholar 

  32. Berdanier CD, McIntosh MK (1989) Further studies on the effects of dehydroepiandrosterone on hepatic metabolism in BHE rats. Proc Soc Exp Biol Med 192:242–247

    PubMed  CAS  Google Scholar 

  33. Valentine B, Nancy K, Monica B, Daniela B, Umberto M, Henry L (1993) Comparative studies of effects of Dehydroepiandrosterone on rat and chicken liver. Comp Biochem Physiol 105B:643–647

    Google Scholar 

  34. Sato Momoka, Tachibana Tetsuya, Furuse Mitsuhiro (2006a) Heat production and lipid metabolism in broiler and layer chickens during embryonic development. Comp Biochem Physiol Part A 143:382–388

    Article  CAS  Google Scholar 

  35. Folch J, Lee M, Slane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J.Bio.Chem 226:497–509

    PubMed  CAS  Google Scholar 

  36. Cleary MP (1991) The antiobesity effect of dehydroepiandrosterone in rats. Proc Soc Exp Biol Med 196:8–16

    PubMed  CAS  Google Scholar 

  37. Cleary MP, Zisk JF (1986) Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats. Int J Obes 10:193–204

    PubMed  CAS  Google Scholar 

  38. Shepherd A, Cleary MP (1984) Metabolic alterations after dehydroepiandrosterone treatment in Zucker rats. Am J Physiol 246:E123–128

    PubMed  CAS  Google Scholar 

  39. Mohan PF, Cleary MP (1988) Effect of short-term DHEA administration on liver metabolism of lean and obese rats. Am J Physiol 255:E1–8

    PubMed  CAS  Google Scholar 

  40. Margot P, Cleary MP (1990) Effect of dehydroepiandrosterone treatment on liver metabolism in rats. Int J Biochem 22:205–210

    Article  Google Scholar 

  41. McIntosh MK, Berdanier CD (1988) Strain differences in the dose-response curves of adrenalectomized, starved-refed rats to dehydroepiandrosterone (DHEA). Proc Soc Exp Biol Med 187:216–222

    PubMed  CAS  Google Scholar 

  42. Henry MH, Burke WH (1999) The effects of in ovo administration of testosterone or an antiandrogen on growth of chick embryos and embryonic muscle characteristics. Poul Sci 78:1006–1013

    CAS  Google Scholar 

  43. vili Mikheil S, Leila B (2005) Hyperandrogenia and lipid metabolism. Ann Biomed Res Edu 5:39–41

    Google Scholar 

  44. Morris SM Jr, Winberry LK, Fisch JE, Back DW, Goodridge AG (1984) Developmental and nutritional regulation of the messenger RNAs for fatty acid synthase, malic enzyme and albumin in the livers of embryonic and newly-hatched chicks. Mol Cell Biochem 64:63–68

    Article  PubMed  CAS  Google Scholar 

  45. Casazza JP, Schaffer WT, Veech RL (1986) The effect of DHEA on liver metabolites. J Nutr 116:304–310

    PubMed  CAS  Google Scholar 

  46. S. Zhao, Ma H, Zou S, Chen W, Zhao R (2007) Hepatic lipogenesis gene expression in broiler chicken with different fat deposition during embryonic development. J Vet Med.A 54:1–6

    Article  Google Scholar 

  47. Marrero M, Prough RA, Frenkel RA, Milewich L (1990) Dehydroepiandrosterone feeding and protein phosphorylation, phosphatases, and lipogenic enzymes in mouse liver. Proc Soc Exp Biol Med 193:110–117

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program (Project No. 2004CB117505). We are grateful to Ms. Pasha Apontes for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixiang Zou.

About this article

Cite this article

Zhao, S., Ma, H., Zou, S. et al. Effects of In Ovo Administration of DHEA on Lipid Metabolism and Hepatic Lipogenetic Genes Expression in Broiler Chickens During Embryonic Development. Lipids 42, 749–757 (2007). https://doi.org/10.1007/s11745-007-3068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3068-y

Keywords

Navigation