Skip to main content
Log in

Polar and Neutral Lipid Composition in the Pelagic Tunicate Pyrosoma atlanticum

  • Original Article
  • Published:
Lipids

Abstract

Structure and functioning of colonial pyrosomes are largely undescribed and their lipid characteristics have received limited attention. The aim of this paper is to fill this gap on one of the dominant species Pyrosoma atlanticum. Lipid content is tightly coupled to size and weight. Lipid composition shows a large dominance of structural polar lipids. Neutral lipids were dominated by sterols with low levels of acylglycerols and free fatty acids. Phospholipids show a dominance of PC with intermediate percentages of PE and DPG. Other constituents (PS, PI, LPC, sphingolipids) were present at lower levels. Fatty acid composition of DAG and TAG showed a dominance of saturated acids (16:0, 14:0), DHA and intermediate levels of MUFA. Phospholipids were dominated by DHA with values exceeding 30% of total FA in all categories except for PI, where lower percentages occurred. Saturated acids were second in abundance with MUFA showing intermediate concentrations. Sterols were dominated by 24-methylcholesta-5,22E-dien-3β-ol with more than 22% of the total sterol. Cholesterol (cholest-5-en-3β-ol) represented only 12 % of the total while 24-methylcholesta-5,24(28)E-dien-3β-ol accounted for 11% of the total sterols. The low levels of triacylglycerols and free fatty acids, coupled with high concentrations of glycolipids and phytoplankton-derived degraded chloropigments, is evidence of a direct link with the digestive activity and substantiate the idea of a high physiological turnover as an alternative to large lipid accumulation. The fatty acid and sterol profiles are consistent with a diverse phytoplankton diet, and a strong contribution of phospholipid classes to energy needs, including locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. vanSoest RWM (1981) A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J Plankton Res 3:603–631

    Google Scholar 

  2. Bone Q (1998) Locomotion, locomotor muscles and buoyancy. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 35–53

    Google Scholar 

  3. Slantchev K, Yalçin F, Ersöz T, Nechev J, Cahs I, Stefanov K, Popov F (2002) Composition of lipophilic extracts of two tunicates. Styela sp. and Phallusia sp. from the eastern Mediterranean. Z Naturforsch 57:534–540

    CAS  Google Scholar 

  4. Veracaoundin I, Barnathan G, Gaydou EM, Aknin M (2003) Phospholipid FA from Indian Ocean Tunicates Eudistoma bituminis and Cystodytes violatinctus. Lipids 38:85–88

    Article  Google Scholar 

  5. Reinhardt SB, Van Vleet ES (1986) Lipid composition of twenty two species of Antarctic midwater zooplankton and fish. Mar Biol 91:149–159

    Article  CAS  Google Scholar 

  6. Deibel D, Cavaletto JF, Riehl M, Gardner WS (1992) Lipid and lipid class content of the pelagic tunicate Oikopleura vanhoeffeni. Mar Ecol Prog Ser 88:297–302

    Article  CAS  Google Scholar 

  7. Pond DW, Sargent JR (1998) Lipid composition of the pelagic tunicate Doiloletta gegenbauri (Tunicata, Thaliacea). J Plankton Res 20:169–174

    Article  CAS  Google Scholar 

  8. Phleger CF, Nelson MM, Mooney B, Nichols PD (2000) Lipids of Antarctic salps and their commensal hyperiid amphipods. Polar Biol 23:329–337

    Article  Google Scholar 

  9. Culkin F, Morris RJ (1970) The fatty acid composition of two marine filter-feeders in relation to a phytoplankton diet. Deep Sea Res 17:861–865

    CAS  Google Scholar 

  10. Jeffs AG, Nichols PD, Mooney BD, Philipps KL, Phleger CF (2004) Identifying potential prey of the pelagic larvae of the spiny lobster Jasus edwardsii using signature lipids. Comp Biochem Physiol 137B:487–507

    CAS  Google Scholar 

  11. Bligh EG, Dyer WJ (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  12. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  13. Sokal RR, Rohlf FJ (1981) Biometry. Freeman and Co, NewYork

    Google Scholar 

  14. Gower JC (1987) Introduction to ordination techniques. In: Legendre P, Legendre L (eds) Development in numerical ecology. NATO ASI series G14, pp. 3–64

  15. Pielou EC (1984) The interpretation of ecological data. Wiley-Interscience, New York

    Google Scholar 

  16. Mayzaud P, Chanut JP, Ackman RG (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acid and sterols. Mar Ecol Prog Ser 56:189–204

    CAS  Google Scholar 

  17. Lebart L, Morineau A, Piron M (1995) Statistique exploratoire multidimensionnelle. Dunod, Paris

    Google Scholar 

  18. Perissinotto R, Mayzaud P, Nichols PD, Labat J-P (2007) Grazing of Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar Ecol Prog Ser 330:1–11

    Article  CAS  Google Scholar 

  19. Drits AV, Arashkevich EG, Semenova TN (1992) Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J Plankton Res 14:799–809

    Article  Google Scholar 

  20. Lee RF (1974) Lipids of zooplankton from Bute Inlet, British Columbia. J Fish Res Bd Can 31:1577–1582

    CAS  Google Scholar 

  21. Morris RJ, McCartney MJ, Schulze-Rönnecke A (1983) Bolinopsis infundibulum biochemical composition in relation to diet. J Exp Mar Biol Ecol 67:149–157

    Article  CAS  Google Scholar 

  22. Lee RF (1975) Lipids of Arctic zooplankton. Comp Biochem Physiol 51B:263–266

    Google Scholar 

  23. Falk-Petersen S, Sargent JR, Tande KS (1987) Lipid composition of zooplankton in relation to the sub-arctic food web. Polar Biol 8:115–120

    Article  CAS  Google Scholar 

  24. Hagen W (1988) On the significance of lipids in Antarctic zooplankton. Berichte zur Polarforschung 49:1–129 (Can Trans Fish Aquat; Sci., 5458)

  25. Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment: a review. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  26. Harbison GR, McAlister VL (1979) The filter-feeding rates and particle retention efficiencies of three species of Cyclosalpa (Tunicata, Thaliacea). Limnol Oceanogr 24:875–892

    Article  Google Scholar 

  27. Makar’eva TN, Grebnev BB, Dmitrenok AS, Stonik VA (1993) Sterol composition of Pyrosoma giganteum. Chem Natural Compounds 28:517–518

    Article  Google Scholar 

  28. Teshima S (1972) Sterol metabolism. Mem Fac Fish Kagoshima University 21:69–147

    CAS  Google Scholar 

  29. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    Article  CAS  Google Scholar 

  30. Mansour MP, Volkman JK, Jackson AE Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  CAS  Google Scholar 

  31. Piretti MV, Pagliuca G, Boni L, Pistocchi R, Diamante M, Gazzoti T (1997) Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. J Phycol 33:61–67

    Article  CAS  Google Scholar 

  32. Mayzaud P, Albessard E, Cuzin-Roudy J (1998). Changes in lipid composition of the Antarctic krill Euphausia superba in the Indian sector of the Antarctic Ocean. Distribution among organs and sexual maturity stage. Mar Ecol Prog Ser 173:149–162

    Article  CAS  Google Scholar 

  33. Mayzaud P, Albessard E, Virtue P, Boutoute M (2000) Environmental constraints on the lipid structure and metabolism of euphausiids: the case of Euphausia superba and Meganyctiphanes norvegica. Can J Fish Aquat Sci 57:91–103

    Article  CAS  Google Scholar 

  34. Mayzaud P, Boutoute M, Alonzo F (2003) Lipid composition of the euphausiids Euphausia vallentini and Thysanoessa macrura during the summer in the Indian sector of the Southern ocean. Antarctic Sci 15:463–475

    Article  Google Scholar 

  35. Joseph JD (1979) Lipid composition of marine and estuarine invertebrates: porifera and cnidaria. Prog Lipid Res 18:1–30

    Article  PubMed  CAS  Google Scholar 

  36. Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  37. Infante JP, Kirwan RC, Brenna JT (1987) High levels of docosahexaenoic acid (22:6n-3)-containing phopholipids in high frequency contraction muscles of hummingbirds and rattlesnakes. Comp Biochem Physiol 130B:291–298

    Google Scholar 

  38. Zachowcki A (1993) Phopholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294:1–14

    Google Scholar 

Download references

Acknowledgements

We thank the French CNRS, the French Polar Institute (IPEV), the South African NRF and the University of KwaZulu-Natal (Durban, South Africa) for providing funds for this study. Finally, we like to thank the captain, officers and crew of the “RV Marion-Dufresne” for their assistance and cooperation during the ANTARES-4 voyage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mayzaud.

About this article

Cite this article

Mayzaud, P., Boutoute, M., Perissinotto, R. et al. Polar and Neutral Lipid Composition in the Pelagic Tunicate Pyrosoma atlanticum . Lipids 42, 647–657 (2007). https://doi.org/10.1007/s11745-007-3066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3066-0

Keywords

Navigation