Skip to main content

Advertisement

Log in

Metabolic Syndrome: Effects of n-3 PUFAs on a Model of Dyslipidemia, Insulin Resistance and Adiposity

  • Original Article
  • Published:
Lipids

Abstract

Both genetic and environmental factors (e.g. nutrition, life style) contribute to the development of the plurimetabolic syndrome, which has a high prevalence in the world population. Dietary n-3 PUFAs specially those from marine oil (EPA and DHA) appear to play an important role against the adverse effects of this syndrome. The present work examined the effectiveness of fish oil (FO) in reversing or improving the dyslipidemia, insulin resistance and adiposity induced in rats by long-term feeding a sucrose-rich diet (SRD). We studied several metabolic and molecular mechanisms involved in both lipid and glucose metabolisms in different tissues (liver, skeletal muscle, fat pad) as well as insulin secretion patterns from perifused islets under the stimulation of different secretagogues. Dietary FO reverses dyslipidemia and improves insulin action and adiposity in the SRD fed rats. FO reduces adipocytes cell size and thus, the smaller adipocytes are more insulin sensitive and the release of fatty acids decreases. In muscle, FO normalizes both the oxidative and non-oxidative glucose pathways. Moreover, FO modifies the fatty acid composition of membrane phospholipids. In isolated β cells, lipid contents and glucose oxidation return to normal. All these effects could contribute to the normalization of glucose-stimulated insulin secretion and muscle insulin insensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheal KL, Abbasi F, Lamendola C, McLaughlin T, Reaven GM, Ford ES (2004) Relationship to insulin resistance of the adult treatment panel III diagnostic criteria for identification of the metabolic syndrome. Diabetes 53:1195–1200

    Article  PubMed  CAS  Google Scholar 

  2. Lombardo YB, Chicco A (2006) Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A Rev J Nutr Biochem 17:1–13

    Article  CAS  Google Scholar 

  3. Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71(suppl):171S–175S

    PubMed  CAS  Google Scholar 

  4. Jump DB, Botolin D, Wang Y, Xu J,Christian B, Demeure O (2005) Fatty acid regulation of hepatic gene transcription. J Nutr 135:2503–2506

    PubMed  CAS  Google Scholar 

  5. Clarke SD (2001) Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 131:1129–1132

    PubMed  CAS  Google Scholar 

  6. Clamp AG, Ladha S, Clark DC, Grimble RF, Lund EK (1997) The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane. Lipids 32:179–184

    Article  PubMed  CAS  Google Scholar 

  7. Reaven GM (1984) Diabetic hypertriglyceridemia in the rat: animal models simulating the clinical syndromes of impaired glucose tolerance, noninsulin-dependent diabetes and insulin-dependent diabetes. In: Shafrir E, Renold AS (eds) Lessons from animal diabetes. Libby, London, pp. 531–536

    Google Scholar 

  8. Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA (1996) Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. Am J Physiol 271:R1319–R1326

    PubMed  CAS  Google Scholar 

  9. Bezerra RMN, Ueno M, Silva MS, Tavares DQ, Carvalho CRO, Saad MJA (2000) A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J Nutr 130:1531–1535

    PubMed  CAS  Google Scholar 

  10. Luo J, Rizkalla SW, Lerer-Metzger M, Boillot J, Ardeleanu A, Bruzzo F, Desplanque N, Dalix AM, Durand G, Slama G (1995) A fructose-rich diet decreases insulin-stimulated glucose incorporation into lipids but not to glucose transport in adipocytes of normal and diabetic rats. J Nutr 125:164–171

    PubMed  CAS  Google Scholar 

  11. Chicco A, Soria A, Fainstein-Day P, Gutman R, Lombardo YB (1994) Multiphasic metabolic changes in the heart of rats fed a sucrose-rich diet. Horm Metab Res 26:397–403

    Article  PubMed  CAS  Google Scholar 

  12. Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 133:127–133

    PubMed  CAS  Google Scholar 

  13. Lombardo YB, Drago S, Chicco A, Fainstein-Day P, Gutman R, Gagliardino JJ, Gomez Dumm CL (1996) Long-term administration of a sucrose-rich diet to normal rats: relationship between metabolic and hormonal profiles and morphological changes in the endocrine pancreas. Metabolism 45:1527–1532

    Article  PubMed  CAS  Google Scholar 

  14. Brenner RR, Rimoldi OJ, Lombardo YB, Gonzalez MS, Bernasconi AM, Chicco A, Basabe JC (2003) Desaturase activities in rat model of insulin resistance induced by a sucrose-rich diet. Lipids 38:733–742

    Article  PubMed  CAS  Google Scholar 

  15. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW (1991) Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglycerides and w-3 fatty acids in muscle phospholipid. Diabetes 40:280–289

    Article  PubMed  CAS  Google Scholar 

  16. Taouis M, Dagou C, Ster C, Durand G, Pinault M, Delarue J (2002) n-3 Polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol 282:E664–E671

    CAS  Google Scholar 

  17. Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237:885–888

    Article  PubMed  CAS  Google Scholar 

  18. Podolin DA, Gayles EC, Wei Y, Thresher JS, Pagliassotti MJ (1998) Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. Am J Physiol 274:R840–R848

    PubMed  CAS  Google Scholar 

  19. Peyron-Caso E, Fluteau-Nadler S, Kabir M, Guerre-Millo M, Quignard-Boulange A, Slama G, Rizkalla SW (2002) Regulation of glucose transport and transporter 4 (Glut-4) in muscle and adipocytes of sucrose-fed rats: effects of n-3 poly- and monounsaturated fatty acids. Horm Metab Res 34:362–366

    Article  Google Scholar 

  20. Lombardo YB, Chicco A, D’Alessandro ME, Martinelli M, Soria A, Gutman R (1996) Dietary fish oil normalizes dyslipidemia and glucose intolerance with unchanged insulin levels in rats fed a high sucrose diet. Biochem Biophys Acta 1299:175–182

    PubMed  Google Scholar 

  21. D’Alessandro ME, Chicco A, Karabatas L, Lombardo YB (2000) Role of skeletal muscle on impaired insulin sensitivity in rats fed a sucrose-rich diet: effect of moderate levels of dietary fish oil. J Nutr Biochem 11:273–280

    Article  PubMed  CAS  Google Scholar 

  22. Pighin D, Karabatas L, Rossi A, Chicco A, Basabe JC, Lombardo YB (2003) Fish oil affects pancreatic fat storage, pyruvate dehydrogenase complex activity and insulin secretion in rats fed a sucrose-rich diet. J Nutr 133:4095–4101

    PubMed  CAS  Google Scholar 

  23. Rossi A, Lombardo YB, Lacorte JM, Chicco A, Rouault C, Slama G, Rizkalla SW (2005) Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats. Am J Physiol 289:R486–R494

    CAS  Google Scholar 

  24. Halestrap AP, Denton RM (1973) Insulin and the regulation of adipose tissue acetylCoA carboxylase. Biochem J 132:509–517

    PubMed  CAS  Google Scholar 

  25. Karlic H, Lohninger S, Koeck T, Lohninger A (2002) l-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J Histochem Cytochem 50:205–212

    PubMed  CAS  Google Scholar 

  26. Vamecq J (1990) Fluorometric assay of peroxisomal oxidase. Anal Biochem 186:340–349

    Article  PubMed  CAS  Google Scholar 

  27. Xing Xian Y, Drackley JK, Odle J (1998) Food deprivation changes peroxisomal β oxidation activity but not catalase activity during postnatal development in pig tissues. J Nutr 128:1114–1121

    Google Scholar 

  28. Hsu TH, Lardy HA (1969) Method of enzymatic analysis, Vol XIII, pp 230

  29. D’Alessandro ME, Chicco A, Lombardo YB (2006) A long-term sucrose-rich diet increases diacylglycerol content and membrane nPKCθ expression and alters glucose metabolism in skeletal muscle of rats. Nutr Res 26:289–296

    Article  CAS  Google Scholar 

  30. Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism on lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  31. Soria A, Chicco A, D’Alessandro ME, Rossi A, Lombardo YB (2002) Dietary fish oil reverse epididymal tissue adiposity, cell hypertrophy and insulin resistance in dyslipemic sucrose fed rat model. J Nutr Biochem 13:209–218

    Article  PubMed  CAS  Google Scholar 

  32. Neschen S, Moore I, Regittnig W, Yu CL, Wang Y, Pypaert M, Petersen KF, Shulman GI (2002) Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am J Physiol 282:E395–E401

    CAS  Google Scholar 

  33. Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ (2000) Long chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol 279:E554–E560

    CAS  Google Scholar 

  34. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron T, Kim JK, Cushman SW, Cooney GJ, Cooney BA, White MF, Kraegen EW, Shulman GI (2002) Mechanism by which fatty acid inhibits insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol-3-kinase activity in muscle. J Biol Chem 277:50230–50236

    Article  PubMed  CAS  Google Scholar 

  35. Sleeman MW, Donegan NP, Heller-Harrison R, Lane WS, Czeck MP (1998) Association of acyl-CoA synthetase-1 with Glut4-containing vesicle. J Biol Chem 273:3132–3135

    Article  PubMed  CAS  Google Scholar 

  36. Turvey EA, Heigenhauser JF, Parolin M, Peters SJ (2005) Elevated n-3 fatty acids in a high-fat diet attenuate the increase in PDH kinase activity but not PDH activity in human skeletal muscle. J Appl Physiol 98:350–355

    Article  PubMed  CAS  Google Scholar 

  37. Aas V, Rokling-Andersen H, Kase ET, Thoresen GH, Rustan AC (2006) Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells. J Lipid Res 47:366–374

    Article  PubMed  CAS  Google Scholar 

  38. Simoncikova P, Wein S, Gasperikova D, Ukropec J, Certik M, Klimes I, Sebokova E (2002) Comparison of the extrapancreatic action of gamma-linolenic acid and n-3 PUFAs in the high fat diet-induced insulin resistance. Endocr Regul 36:143–149

    PubMed  CAS  Google Scholar 

  39. Brun RP, Spiegelman BM (1997) Obesity and the adipocyte. J Endocrinol 155:217–218

    Article  PubMed  CAS  Google Scholar 

  40. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akunuma Y, Gavrilova O, Vinson C, Reitman M, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:887–888

    Article  CAS  Google Scholar 

  41. Skurnick-Minot G, Laromiguiere M, Oppert JM, Quignard-Boulange A, Boillot J, Rigoir A, Slama G, Rizkalla SW (2004) Whole-body fat mass and insulin sensitivity in type 2 diabetic women: effect of n-3 polyunsaturated fatty acids. In: 64th ADA Meeting, Orlando, June 4th–8th, Diabetes 53, Suppl 2, A44 (0159)

  42. Poitout V (2004) β-cell lipotoxicity: burning fat into heat? Endocrinology 145:3563–3565

    Article  PubMed  CAS  Google Scholar 

  43. Zak A, Zeman E, Tvrzicka E, Pisarikova A, Sindelkova E, Vrana A (1993) Glucose tolerance, insulin secretion, plasma lipid fatty acids, and the hypolipidemic effects of fish oil. In: Klimes I, Howard BU, Storlien LH, Sebokova E (eds) Dietary lipids and insulin action, vol 683. New York Academy of Sciences, New York, pp 378–379

Download references

Acknowledgments

This investigation was carried out with the financial support of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) and CONICET, Grants N° PICTO # 05-13260/BID 1201/OC-AR, PIP # 5619/2005. The authors thank A.M. Bernasconi, Instituto de Investigaciones Bioquímicas de La Planta (INIBIOLP) for her technical assistance in the determination of muscle phospholipids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda B. Lombardo.

About this article

Cite this article

Lombardo, Y.B., Hein, G. & Chicco, A. Metabolic Syndrome: Effects of n-3 PUFAs on a Model of Dyslipidemia, Insulin Resistance and Adiposity. Lipids 42, 427–437 (2007). https://doi.org/10.1007/s11745-007-3039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3039-3

Keywords

Navigation