Skip to main content
Log in

Bovine Brain Diacylglycerol Lipase: Substrate Specificity and Activation by Cyclic AMP-dependent Protein Kinase

  • Original Article
  • Published:
Lipids

Abstract

Diacylglycerol lipase (EC 3.1.1.3) was purified from bovine brain microsomes using multiple column chromatographic techniques. The purified enzyme migrates as a single band on SDS-PAGE and has an apparent molecular weight of 27 kDa. Substrate specificity experiments using mixed molecular species of 1,2-diacyl-sn-glycerols indicate that low concentrations of Ca2+ and Mg2+ have no direct effect on enzymic activity and 1,2-diacyl-sn-glycerols are the preferred substrate over 1,3-diacyl-sn-glycerols. The enzyme hydrolyzes stearate in preference to palmitate from the sn-1 position of 1,2-diacyl-sn-glycerols. 1-O-Alkyl-2-acyl-sn-glycerols are not a substrate for the purified enzyme. The native enzyme had a V max value of 616 nmol/min mg protein. Phosphorylation by cAMP-dependent protein kinase resulted in a threefold increase in catalytic throughput (V max = 1,900 nmol/min mg protein). The substrate specificity and catalytic properties of the bovine brain diacylglycerol lipase suggest that diacylglycerol lipase may regulate protein kinase C activity and 2-arachidonoyl-sn-glycerol levels by rapidly altering the intracellular concentration of diacylglycerols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerols

PKC:

Protein kinase C

PKA:

cAMP-dependent protein kinase

PLC:

Phospholipase C

PLD:

Phospholipase D

CB-1:

Cannabinoid receptor 1

2-AG:

2-Arachidonoyl-sn-glycerol

PtdIns(4,5)P2 :

Phosphatidylinositol-4,5-bisphosphate

Ins(1,4,5)P3 :

Inositol-1,4,5-trisphosphate

thioester substrate:

rac-1,2-S,O-didecanoyl-1-mercapto-2,3-propanediol

physiologic substrate:

1-Stearoyl-2-arachidonoyl-sn-glycerol

References

  1. Lee DP, Deonarine AS, Kienetz M, Zhu Q, Skrzypczak M, Chan M, Choy PC (2001) A novel pathway for lipid biosynthesis: the direct acylation of glycerol. J Lipid Res 42:1979–1986

    PubMed  CAS  Google Scholar 

  2. Marignani PA, Epand RM, Sebaldt RJ (1996) Acyl chain dependence of diacylglycerol activation of protein kinase C activity in vitro. Biochem Biophys Res Commun 225:469–473

    Article  PubMed  CAS  Google Scholar 

  3. Sugiura T, Kobayashi Y, Oka S, Waku K (2002) Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 66:173–192

    Article  PubMed  CAS  Google Scholar 

  4. Bisogno T, Sepe N, Melck D, Maurelli S, De Petrocellis L, Di Marzo V (1997) Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem J 322:671–677

    PubMed  CAS  Google Scholar 

  5. Bisogno T, Sepe N, De Petrocellis L, Di Marzo V (1997) Biosynthesis of 2-arachidonoyl-glycerol, a novel cannabimimetic eicosanoid, in mouse neuroblastoma cells. Adv Exp Med Biol 433:201–204

    PubMed  CAS  Google Scholar 

  6. Nakamura S, Nishizuka Y (1994) Lipid mediators and protein kinase C activation for the intracellular signaling network. J Biochem (Tokyo) 115:1029–1034

    CAS  Google Scholar 

  7. Kiley SC, Parker PJ, Fabbro D, Jaken S (1991) Differential regulation of protein kinase C isozymes by thyrotropin-releasing hormone in GH4C1 cells. J Biol Chem 266:23761–23768

    PubMed  CAS  Google Scholar 

  8. Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42

    PubMed  CAS  Google Scholar 

  9. Farooqui AA, Farooqui T, Yates AJ, Horrocks LA (1988) Regulation of protein kinase C activity by various lipids. Neurochem Res 13:499–511

    Article  PubMed  CAS  Google Scholar 

  10. Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498

    Article  PubMed  CAS  Google Scholar 

  11. Bell RM, Burns DJ (1991) Lipid activation of protein kinase C. J Biol Chem 266:4661–4664

    PubMed  CAS  Google Scholar 

  12. Sugiura T, Kodaka T, Kondo S, Tonegawa T, Nakane S, Kishimoto S, Yamashita A, Waku K (1996) 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma × glioma hybrid NG108–15 cells. Biochem Biophys Res Commun 229:58–64

    Article  PubMed  CAS  Google Scholar 

  13. Parrish JC, Nichols DE (2006) Serotonin 5-HT receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism. J Neurochem 99:1164–1175

    Article  PubMed  CAS  Google Scholar 

  14. Sugiura T, Kodaka T, Kondo S, Nakane S, Kondo H, Waku K, Ishima Y, Watanabe K, Yamamoto I, (1997) Is the cannabinoid CB1 receptor a 2-arachidonoylglycerol receptor? Structural requirements for triggering a Ca2+ transient in NG108-15 cells. J Biochem (Tokyo) 122:890–895

    CAS  Google Scholar 

  15. Sugiura T, Kodaka T, Kondo S, Tonegawa T, Nakane S, Kishimoto S, Yamashita A, Waku K (1997) Inhibition by 2-arachidonoylglycerol, a novel type of possible neuromodulator, of the depolarization-induced increase in intracellular free calcium in neuroblastoma x glioma hybrid NG108–15 cells. Biochem Biophys Res Commun 233:207–210

    Article  PubMed  CAS  Google Scholar 

  16. Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778

    Article  PubMed  CAS  Google Scholar 

  17. Williams EJ, Walsh FS, Doherty P (2003) The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 160:481–486

    Article  PubMed  CAS  Google Scholar 

  18. Farooqui AA, Taylor WA, Horrocks LA (1984) Separation of bovine brain mono- and diacylglycerol lipases by heparin sepharose affinity chromatography. Biochem Biophys Res Commun 122:1241–1246

    Article  PubMed  CAS  Google Scholar 

  19. Farooqui AA, Rammohan KW, Horrocks LA (1989) Isolation, characterization, and regulation of diacylglycerol lipases from the bovine brain. Ann NY Acad Sci 559:25–36

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Cox JW, Horrocks LA (1981) Preparation of thioester substrates and development of continuous spectrophotometric assays for phospholipase A1 and monoacylglycerol lipase. J Lipid Res 22:496–505

    PubMed  CAS  Google Scholar 

  22. Breckenridge WC, Kuksis A (1968) Specific distribution of short-chain fatty acids in molecular distillates of bovine milk fat. J Lipid Res 9:388–393

    PubMed  CAS  Google Scholar 

  23. Nakagawa Y, Horrocks LA (1983) Separation of alkenylacyl, alkylacyl, and diacyl analogues and their molecular species by high performance liquid chromatography. J Lipid Res 24:1268–1275

    PubMed  CAS  Google Scholar 

  24. Bell RL, Kennerly DA, Stanford N, Majerus PW, (1979) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76:3238–3241

    Article  PubMed  CAS  Google Scholar 

  25. Majerus PW, Prescott SM (1982) Characterization and assay of diacylglycerol lipase from human platelets. Methods Enzymol 86:11–17

    Article  PubMed  CAS  Google Scholar 

  26. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Doherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    Article  PubMed  CAS  Google Scholar 

  27. Dawson RM, Hemington NL, Irvine RF (1983) Diacylglycerol potentiates phospholipase attack upon phospholipid bilayers: possible connection with cell stimulation. Biochem Biophys Res Commun 117:196–201

    Article  PubMed  CAS  Google Scholar 

  28. Tilcock CP, Bally MB, Farren SB, Cullis PR, Gruner SM (1984) Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition. Biochemistry 23:2696–2703

    Article  PubMed  CAS  Google Scholar 

  29. Breivogel CS, Griffin G, Di Marzo V, Martin BR (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    PubMed  CAS  Google Scholar 

  30. Bazinet RP, Lee HJ, Felder CC, Porter AC, Rapoport SI, Rosenberger TA (2005) Rapid high-energy microwave fixation is required to determine the anandamide (N-arachidonoylethanolamine) concentration of rat brain. Neurochem Res 30:597–601

    Article  PubMed  CAS  Google Scholar 

  31. Farooqui AA, Horrocks LA (1997) Nitric oxide synthase inhibitors do not attenuate diacylglycerol or monoacylglycerol lipase activities in synaptoneurosomes. Neurochem Res 22:1265–1269

    Article  PubMed  CAS  Google Scholar 

  32. Farooqui AA, Anderson DK, Horrocks LA (1993) Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res 604:180–184

    Article  PubMed  CAS  Google Scholar 

  33. Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24:8068–8074

    Article  PubMed  CAS  Google Scholar 

  34. Khoo JC, Steinberg D, Huang JJ, Vagelos PR (1976) Triglyceride, diglyceride, monoglyceride, and cholesterol ester hydrolases in chicken adipose tissue activated by adenosine 3′:5′-monophosphate-dependent protein kinase. Chromatographic resolution and immunochemical differentiation from lipoprotein lipase. J Biol Chem 251:2882–2890

    PubMed  CAS  Google Scholar 

  35. Khoo JC, Steinberg D, Lee EY (1978) Activation of chicken adipose tissue diglyceride lipase by cyclic AMP-dependent protein kinase and its deactivation by purified protein phosphatase. Biochem Biophys Res Commun 80:418–423

    Article  PubMed  CAS  Google Scholar 

  36. Mau SE, Vilhardt H, (1997) Cross talk between substance P and melittin-activated cellular signaling pathways in rat lactotroph-enriched cell cultures. J Neurochem 69:762–772

    Article  PubMed  CAS  Google Scholar 

  37. Bisogno T, Melck D, De Petrocellis L, Di Marzo V (1999) Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J Neurochem 72:2113–2119

    Article  PubMed  CAS  Google Scholar 

  38. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99:10819–10824

    Article  PubMed  CAS  Google Scholar 

  39. Becker KP, Hannun YA (2004) Diacylglycerols. In: Nicolaou A, Kokotos G (eds) Bioactive lipids. The Oily Press, Bridgwater, pp 37–61

Download references

Acknowledgments

This work was supported in part by research grants NS-10165 and NS-29441 from the National Institutes of Health, US Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thad A. Rosenberger.

About this article

Cite this article

Rosenberger, T.A., Farooqui, A.A. & Horrocks, L.A. Bovine Brain Diacylglycerol Lipase: Substrate Specificity and Activation by Cyclic AMP-dependent Protein Kinase . Lipids 42, 187–195 (2007). https://doi.org/10.1007/s11745-007-3019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3019-7

Keywords

Navigation