Skip to main content

Anticancer activity of natural and synthetic acetylenic lipids

Abstract

This review is a comprehensive survey of acetylenic lipids and their derivatives, obtained from living organisms, that have anticancer activity. Acetylenic metabolites belong to a class of molecules containing triple bond(s). They are found in plants, fungi, microorganisms, and marine invertebrates. Although acetylenes are common as components of terrestrial plants, fungi, and bacteria, it is only within the last 30 years that biologically active polyacetylenes having unusual structural features have been reported from plants, cyanobacteria, algae, invertebrates, and other sources. Naturally occurring aquatic acetylenes are of particular interest since many of them display important biological activities and possess antitumor, antibacterial, antimicrobial, antifouling, antifungal, pesticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. There is no doubt that they are of great interest, especially for the medicinal and/or pharmaceutical industries. This review presents structures and describes cytotoxic and anticancer activities only for more than 300 acetylenic lipids and their derivatives isolated from living organisms.

This is a preview of subscription content, access via your institution.

Abbreviations

A549:

lung carcinoma cells

COX:

cyclo-oxygenase

ED50 :

dose that is effective in 50% of test subjects

HeLa:

cervical cancer cells

IC50 :

concentration that is inhibitory to 50% of the test subjects

KB:

KB carcinoma cells

L-1210:

murine leukemic cells

LC50 :

concentration lethal to test animals in a given time, usually 4 h

LOX:

lipoxygenase

MK-1:

human gastric adenocarcinoma

P388:

murine lymphocytic leukemia

PA:

phosphatidic acid

PC:

phosphatidylcholine

PQ:

panaquinquecol

References

  1. Dembitsky, V.M., and Levitsky, D.O. (2006) Acetylenic Terrestrial Anticancer Agents.Nat. Prod. Commun. 1, 405–429.

    CAS  Google Scholar 

  2. Lam, J., Breteler, H., Arnason, A., and Hansen, H. (eds.) (1988)Chemistry and Biology of Naturally Occurring Acetylenes and Related Compounds, Elsevier, Amsterdam, 366 pp.

    Google Scholar 

  3. McAfee, B.J., and Taylor, A. (1999) A Review of the Volatile Metabolites of Fungi Found on Wood Substrates,Nat. Toxins 7, 283–303.

    PubMed  CAS  Article  Google Scholar 

  4. Paiz, L., Lopez, I., and Rodriguez, E. (1989) Chemistry and Distribution of Bioactive Polyacetylenes in Asteraceae.Rev. Latinoamericana Quim. 20, 120–125.

    CAS  Google Scholar 

  5. Nie, B., Lu, Y., and Chen, Z. (2002) Progress in Studies on Naturally Occurring Polyacetylenes.Zhongcaoyao (China) 33, 1050–1053.

    CAS  Google Scholar 

  6. Dembitsky, V.M., Levitsky, D.O., Gloriozova, T., and Poroikov, V.V. (2006) Acetylenic Aquatic Anticancer Agents and Related Compounds,Nat. Prod. Commun. 1, 773–812.

    CAS  Google Scholar 

  7. Cosio, E.G., Towers, G.H.N., Norton, R.A., and Rodriguez, E. (1988) Polyacetylenes. Phytochemicals in Plant Cell Cultures,Cell Cult. Somatic Cell Genet. Plants 5, 495–508.

    CAS  Google Scholar 

  8. Halstead, B.W. (1969) Marine Biotoxins: A New Source of Medicinals.Lloydia 32, 484–488.

    PubMed  CAS  Google Scholar 

  9. Ebermann, R., Alth, G., Kreitner, M., and Kubin, A. (1996) Natural Products Derived from Plants as Potential Drugs for the Photodynamic Destruction of Tumor Cells.J. Photochem. Photobiol. 36B, 95–97.

    Google Scholar 

  10. Heinrich, M., Robles, M., West, J.E., Ortiz de Montellano, B.R., and Rodriguez, E. (1998) Ethnopharmacology of Mexican Asteraceae (Compositae).Annu. Rev. Pharmacol. Toxicol. 38, 539–365.

    PubMed  CAS  Article  Google Scholar 

  11. Cheuk, K.K.L., Li, B.S., and Tang, B.Z. (2002) Amphiphilic Polymers Comprising of Conjugated Polyacetylene Backbone and Naturally Occurring Pendants: Synthesis, Chain Helicity, Self-Assembling Structure, and Biological Activity.Curr. Trends Polymer Sci. 7, 41–55.

    CAS  Google Scholar 

  12. Lam, J.W.Y., and Tang, B.Z. (2005) Functional Polyacetylenes,Acc. Chem. Res. 38, 745–754.

    PubMed  CAS  Article  Google Scholar 

  13. Malchenko, O.A., Soboleva, N.P., Zotchik, N.V., Pavlovskaya, G., and Rubtsov, I.A. (1974) Preparation and Biological Activity of a Number of Compounds of the Acetylene Series,Pharm. Chem. J. 8, 458–461.

    Article  Google Scholar 

  14. Soerensen, N.A. (1968) Taxonomic Significance of Acetylenic Compounds in Plants,Recent Adv. Phytochem. 1, 187–227.

    Google Scholar 

  15. Bohlmann, F. (1973) Naturally Occurring Acetylenes,Phytochemistry 3, 112–131.

    CAS  Google Scholar 

  16. Christensen, L.P., and Lam, J. (1991) Acetylenes and Related Compounds in Heliantheae,Phytochemistry 30, 11–49.

    CAS  Article  Google Scholar 

  17. Christensen, L.P. (1998) Biological Activities of Naturally Occurring Acetylenes and Related Compounds from Higher Plants,Rec. Res. Develop. Phytochem. 2, 227–257.

    CAS  Google Scholar 

  18. Dembitsky, V.M., Gloriozova, T., and Poroikov, V.V. (2005) Novel Antitumor Agents: Marine Sponge Alkaloids, Their Synthetic Analogues and Derivatives,Mini Revs. Med. Chem. 5, 319–336.

    CAS  Google Scholar 

  19. Oh, M., Choi, Y.H., Choi, S., Chung, H., Kim, K., Kim, S.I., Kim, D.K., and Kim, N.D. (1999) Anti-proliferating Effects of Ginsenoside Rh2 on MCF-7 Human Breast Cancer Cells,Int. J. Oncol. 14, 869–875.

    PubMed  CAS  Google Scholar 

  20. Konoshima, T., Takasaki, M., and Tokuda, H. (1999) Anti-carcinogenic Activity of the Roots ofPanax notoginseng. II,Biol. Pharm. Bull. 22, 1150–1152.

    PubMed  CAS  Google Scholar 

  21. Fujimoto, Y., and Satoh, M. (1987) Acetylenes from the Callus ofPanax ginseng, Phytochemistry 26, 2850–2852.

    CAS  Article  Google Scholar 

  22. Fujimoto, Y., Satoh, M., Takeuchi, N., and Kirisawa, M. (1989) Synthesis and the Absolute Configuration of Panaxacol,Chem. Lett. 9, 1619–1622.

    Article  Google Scholar 

  23. Kotsuki, H. (1990) Enantioselective Total Synthesis of Natural Products by Using Novel Coupling Reactions of Chiral Triflates,Trends Org. Chem. 1, 141–150.

    CAS  Google Scholar 

  24. Kotsuki, H. (1999) Chiral Triflate Technology. An Efficient Tool for the Construction of Biologically Interesting Natural Products in Optically Pure Forms,Yuki Gosei Kagaku Kyokaishi (Japan) 57, 334–345.

    CAS  Google Scholar 

  25. Kim, S.I., Kang, K.S., Kim, H., and Ahn, B.Z. (1989) Panaxyne, a New Cytotoxic Polyyne fromPanax ginseng Root Against L1210 Cell,Saengyak Hakhoechi (S. Korea) 20, 71–75.

    CAS  Google Scholar 

  26. Kim, H., and Kim, S.I. (1990) HPLC Analysis of Free Malonaldehyde in Nine Ginseng Polyacetylene-Treated Liver Microsome,Koryo Insam Hakhoechi (S. Korea) 14, 373–378.

    CAS  Google Scholar 

  27. Kim, S.I., Kang, K.S., and Lee, Y.H. (1989) Panaxyne Epoxide, a New Cytotoxic Polyyne fromPanax ginseng Root Against L1210 Cells,Archiv. Pharm. Res. (S. Korea) 12, 48–51.

    CAS  Google Scholar 

  28. Poplawski, J., Wrobel, J.T., and Glinka, T. (1980) Panaxydol, a New Polyacetylenic Epoxide fromPanax ginseng Roots,Phytochemistry 19, 1539–1541.

    CAS  Google Scholar 

  29. Saita, T., Katano, M., Matsunaga, H., Yamamoto, H., Fujito, H., and Mori, M. (1993) The First Specific Antibody Against Cytotoxic Polyacetylenic Alcohol, Panaxynol,Chem. Pharm. Bull. 41, 549–552.

    PubMed  CAS  Google Scholar 

  30. Kitagawa, I., Taniyama, T., Shibuya, H., Noda, T., and Yoshikawa, M. (1987) Chemical Studies on Crude Drug Processing. V. On the Constituents of Ginseng Radix Rubra (2): Comparison of the Constituents of White Ginseng and Red Ginseng Prepared from the SamePanax ginseng Root,Yakugaku Zasshi 107, 495–505.

    PubMed  CAS  Google Scholar 

  31. Ahn, B.Z., and Kim, S.I. (1988) Relation Between Structure and Cytotoxic Activity of Panaxydol Analogs Against L1210 Cells,Archiv. Pharm. (Weinheim) 321, 61–63.

    CAS  Article  Google Scholar 

  32. Matsunaga, H., Katano, M., Yamamoto, H., Fujito, H., Mori, M., and Takata, K. (1990) Cytotoxic Activity of Polyacetylene Compounds inPanax ginseng C.A. Meyer,Chem. Pharm. Bull. 38, 3480–3484.

    PubMed  CAS  Google Scholar 

  33. Kim, Y.S., Kim, S.I., and Hahn, D.R. (1989) Effects of Polyacetylenes fromPanax ginseng on Some Microsomal and Mitochondrial Enzymes,Saengyak Hakhoechi 20, 154–161.

    CAS  Google Scholar 

  34. Kim, H., Lee, Y.H., and Kim, S.I. (1988) A Possible Mechanism of Polyacetylene Membrane Cytotoxicity,Korean J. Toxicol. 4, 95–105.

    CAS  Google Scholar 

  35. Matsunaga, H., Katano, M., Saita, T., Yamamoto, H., and Mori, M. (1994) Potentiation of Cytotoxicity of Mitomycin C by a Polyacetylenic Alcohol, Panaxytriol,Cancer Chemother. Pharmacol. 33, 291–297.

    PubMed  CAS  Article  Google Scholar 

  36. Matsunaga, H., Saita, T., Nagumo, F., Mori, M., and Katano, M. (1995) A Possible Mechanism for the Cytotoxicity of a Polyacetylenic Alcohol, Panaxytriol: Inhibition of Mitochondrial Respiration,Cancer Chemother. Pharmacol. 35, 291–296.

    PubMed  CAS  Google Scholar 

  37. Kim, Y.S., Kim, S.I., and Hahn, D.R. (1988) Effect of Polyacetylene Compounds fromPanax ginseng on Macromolecular Synthesis by Lymphoid Leukemia L1210,Yakhak Hoechi 32, 137–140.

    CAS  Google Scholar 

  38. Otsuka, H., Komiya, T., Fujioka, S., Goto, M., Hiramatsu, Y., and Fujimura, H. (1981) Studies on Anti-inflammatory Agents. IV. Anti-inflammatory Constituents from Roots ofPanax ginseng C.A. Meyer,Yakugaku Zasshi 101, 1113–1117.

    PubMed  CAS  Google Scholar 

  39. Alanko, J., Kurahashi, Y., Yoshimoto, T., Yamamoto, S., and Baba, K. (1994) Panaxynol, a Polyacetylene Compound Isolated from Oriental Medicines, Inhibits Mammalian Lipoxygenases,Biochem. Pharmacol. 48, 1979–1981.

    PubMed  CAS  Article  Google Scholar 

  40. Kim, J.Y., Lee, K.-W., Kim, S.-H., Wee, J.J., Kim, Y.-S., and Lee, H.J. (2002) Inhibitory Effect of Tumor Cell Proliferation and Induction of G2/M Cell Cycle Arrest by Panaxytriol,Planta Med. 68, 119–122.

    PubMed  CAS  Article  Google Scholar 

  41. Nakano, Y., Matsunaga, H., Saita, T., Mori, M., Katano, M., and Okabe, H. (1998) Antiproliferative Constituents in Umbelliferae Plants II. Screening for Polyacetylenes iin Some Umbelliferae Plants, and Isolation of Panaxynol and Falcarindiol from the Root ofHeracleum moellendorffii, Biol. Pharm. Bull. 21, 257–261.

    PubMed  CAS  Google Scholar 

  42. Fujimoto, Y., and Sato, M. (1988) A New Cytotoxic Chlorine-containing Polyacetylene from the Callus ofPanax ginseng, Chem. Pharm. Bull. 36, 4206–4208.

    PubMed  CAS  Google Scholar 

  43. Fujiki, Y., Sato, Y., and Ushiyama, K. (1987) Anticancer Agents Containing Heptadeca-4,6-diynes and Formulations Thereof, Japan Kokai Tokkyo Koho, 6 pp., Japanese Patent: JP 62207234 A2 19870911 Showa.

  44. Fujimoto, Y., Honma, Y., Sato, Y., and Ushiyama, K. (1989) Fungicides Containing Heptadecadiyne Derivatives, Japan Kokai Tokkyo Koho, 5 pp. Japanese Patent: JP 01006201 A2 19890110 Heisei.

  45. Kim, S.I., Lee, Y.H., and Kang, K.S. (1989) 10-Acetyl Panaxytriol, a New Cytotoxic Polyacetylene fromPanax ginseng, Yakhak Hoechi 33, 118–123.

    CAS  Google Scholar 

  46. Hirakura, K., Takagi, H., Morita, M., Nakajima, K., Niitsu, K., Sasaki, H., Maruno, M., and Okada, M. (2000) Cytotoxic Activity of Acetylenic Compounds fromPanax ginseng, Natural Medicines (Tokyo) 54, 342–345.

    CAS  Google Scholar 

  47. Kazuhiro, F., Fushimi, K., and Chin, M. (1994) Acetylenic Compounds ofPanax ginseng and Neoplasm Inhibitors Containing Them, Japan Kokai Tokkyo Koho, 6 pp., Japanese Patent: JP 06025088 A2 19940201 Heisei.

  48. Saita, T., Katano, M., Matsunaga, H., Kouno, I., Fujito, H., and Mori, M. (1995) Screening of Polyacetylenic Alcohols in Crude Drugs Using the ELISA for Panaxytriol,Biol. Pharm. Bull. 18, 933–937.

    PubMed  CAS  Google Scholar 

  49. Lee, G., Park, H.-G., Choi, M.-L., Kim, Y.H., Park, Y.B., Song, K.-S., Cheong, C., and Bae, Y.-S. (2000) Falcarindiol, a Polyacetylenic Compound Isolated fromPeucedanum japonicum, Inhibits Mammalian DNA Topoisomerase I,J. Microbiol. Biotechnol. 10, 394–398.

    CAS  Google Scholar 

  50. Setzer, W.N., Gu, X., Wells, E.B., Setzer, M.C., and Moriarity, D.M. (2000) Synthesis and Cytotoxic Activity of a Series of Diacetylenic Compounds Related to Falcarindiol,Chem. Pharm. Bull. 48, 1776–1777.

    PubMed  CAS  Google Scholar 

  51. Bae, Y.S., Choi, M.R., Jung, J.J., Kim, Y.H., Lee, G., Park, H.G., Park, Y.B., and Song, G.S. (2002) Falcarindiol Extracted fromPeucedanum japonicum and Production Thereof, Korean Kongkae Taeho Kongbo, Korean Patent: KR 2002053473 A 20020705.

  52. Fujimoto, Y., Satoh, M., Takeuchi, N., and Kirisawa, M. (1991) Cytotoxic Acetylene fromPanax quinquefolium, Chem. Pharm. Bull. 39, 521–523.

    PubMed  CAS  Google Scholar 

  53. Fujimoto, Y. (1994) Panaquinquecols ofPanax quinquefolium and Their Use as Anticancer Agents, Japan Kokai Tokyo Koho, 9 pp. Japanese Patent: JP 06009418 A2 19940118 Heisei.

  54. Fujimoto, Y., Wang, H., Kirisawa, M., Satoh, M., and Takeuchi, N. (1992) Acetylenes fromPanax quinquefolium, Phytochemistry 31, 3499–3501.

    CAS  Article  Google Scholar 

  55. Bae, H.O., Chae, G.Y., Chung, H.T., Jang, S.I., Kwon, T.O., Lee, H.S., Oh, H.C., and Yun, Y.G. (2003) Acetylene Compounds Separated fromAcanthopanax senticosus and Composition Containing the Same to Induce Apoptosis, Kongkae Taeho Kongbo, No pp. Korean Patent: KP 2003059643 A 20030710.

  56. Zhang, Y., Liu, B., and Pei, Y. (2002) Pharmacological Action ofAcanthopanax senticosus (Rupr. et Maxim.) Harms,Shenyang Yaoke Daxue Xuebao (China) 19, 143–146.

    CAS  Google Scholar 

  57. Kwak, T.H., Shin, M.S., Kim, J.Y., and Park, J.-K. (2003) Active Fraction Having Anticancer and Anti-metastasis Isolated fromAcanthopanax Species and Fruits, PCT International, 43 pp. WO 2003099309 A1 Application: WO 2003-KR1043 20030528.

  58. Zhang, Z. (2005) Manufacture of Traditional Chinese Medicine Freeze Dried Powder Injection for Treating Tumors, Faming Zhuanli Shenqing Gongkai Shuomingshu, 15 pp., Chinese Patent: CN 1559454 A 20050105.

  59. Kustrak, D. (1993) Siberian Ginseng or the Root from Taiga—Eleutherococcus senticosus, Farmaceutski Glasnik (Croatia) 49, 1–7.

    CAS  Google Scholar 

  60. Nishibe, S. (1995) Bioactive Lignans and Flavonoids from Traditional Medicines,Colloq. INRA 69, 113–122.

    CAS  Google Scholar 

  61. Smith, M., and Boon, H.S. (1999) Counseling Cancer Patients About Herbal Medicine,Patient Educ. Couns. 38, 109–120.

    PubMed  CAS  Article  Google Scholar 

  62. Nishibe, S., and Deyama, T. (2002) Bioactive Lignans from Herbal Medicines,Natural Medicines (Tokyo) 56, 227–238.

    CAS  Google Scholar 

  63. Fujihashi, T., Okuma, T., Hirakura, K., and Mihashi, H. (1991) Anticancer Agents Containing Polyacetylenes, Japan Kokai Tokkyo Koho, 14 pp. Japanese Patent: JP 03200736 A2 19910902 Heisei.

  64. Fujimoto, Y., Wang, H., Satoh, M., and Takeuchi, N. (1994) Polyacetylenes fromPanax quinquefolium Phytochemistry 35, 1255–1257.

    CAS  Article  Google Scholar 

  65. Tanaka, S., Ikeshiro, Y., Tabata, M., and Konoshima, M. (1977) Anti-nociceptive Substances from the Roots ofAngelica acutiloba, Arzneim. Forsch. 27, 2039–2045.

    CAS  Google Scholar 

  66. Haigh, W.G., Morris, L.J., and James, A.T. (1968) Acetylenic Acid Biosynthesis inCrepis rubra, Lipids 3, 307–312.

    CAS  Article  PubMed  Google Scholar 

  67. Haigh, W.G., and James, A.T. (1967) The Biosynthesis of an Acetylenic Acid, Crepenynic Acid,Biochim. Biophys. Acta 137, 391–392.

    PubMed  CAS  Google Scholar 

  68. Susilo, R. (2002) Preparation of Pharmaceutically Active Uridine Ester Nucleosides Against a Variety of Diseases, PCT Int. Application, 73 pp., German Patent: WO 2002088159 A1 20021107.

  69. Nugteren, D.H., and Christ-Hazelhof, E. (1987) Naturally Occurring Conjugated Octadecatrienoic Acids Are Strong Inhibitors of Prostaglandin Biosynthesis,Prostaglandins 33, 403–417.

    PubMed  CAS  Article  Google Scholar 

  70. Brandt, K., and Christensen, L.P. (2000) Vegetables as Nutraceuticals—Falcarinol in Carrots and Other Root Crops,Spec. Pub. Roy. Soc. Chem. 255, 386–391.

    CAS  Google Scholar 

  71. Yates, S.G., England, R.E., Kwolek, W.F., and Simon, P.W. (1983) Analysis of Carrot Constituents: Myristicin, Falcarinol, and Falcarindiol, inXenobiotics in Foods and Feeds (Finley, J.W., and Schwass, eds.), pp. 333–344, American Chemical Society, Washington, DC, Symposium Series Vol. 234.

    Google Scholar 

  72. Bernart, M.W., Cardellina, J.H., II, Balaschak, M.S., Alexander, M., Shoemaker, R.H., and Boyd, M.R. (1996) Cytotoxic Falcarinol Oxylipins fromDendropanax arboreus, J. Nat. Prod. 59, 748–753.

    PubMed  CAS  Article  Google Scholar 

  73. Setzer, W.N., Green, T.J., Whitaker, K.W., Moriarity, D.M., Yancey, C.A., Lawton, R.O., and Bates, R.B. (1995) A Cytotoxic Diacetylene fromDendropanax arboreus, Planta Med. 61, 470–471.

    PubMed  CAS  Article  Google Scholar 

  74. Pino, J.A., Marbot, R., Payo, A., Chao, D., Herrera, P., and Marti, M.P. (2005) Leaf Oil ofDendropanax arboreus L. from Cuba,J. Essent. Oil Res. 17, 547–548.

    CAS  Google Scholar 

  75. Moriarity, D.M., Huang, J., Yancey, C.A., Zhang, P., Setzer, W.N., Lawton, R.O., Bates, R.B., and Caldera, S. (1998) Lupeol Is the Cytotoxic Principle in the Leaf extract ofDendropanax cf. querceti, Planta Med., 64, 370–372.

    PubMed  CAS  Article  Google Scholar 

  76. Nagaya, H., Nagae, T., Usami, A., Itokawa, H., Takeya, K., and Omar, A.A. (1994) Cytotoxic Chemical Constituents from Egyptian Medicinal Plant,Ambrosia maritima L.,Natural Medicines (Tokyo) 48, 223–226.

    CAS  Google Scholar 

  77. Zid, S.A., and Orihara Y. (2005) Polyacetylenes Accumulation inAmbrosia maritima Hairy Root and Cell Cultures After Elicitation with Methyl JasmonatePlant Cell Tissue Organ Cult. 81, 65–75.

    CAS  Article  Google Scholar 

  78. Nakamura, Y., Ohto, Y., Murakami, A., Jiwajinda, S., and Ohigashi, H. (1998) Isolation and Identification of Acetylenic Spiroketal Enol Ethers fromArtemisia lactiflora as Inhibitors of Superoxide Generation Induced by a Tumor Promoter in Differentiated HL-60 Cells,J. Agric. Food Chem. 46, 5031–5036.

    CAS  Article  Google Scholar 

  79. Murakami A., and Ohigashi, H. (1999) Cancer Preventive Potentials of Edible Plants from Subtropical Countries,Food Style 3, 35–39.

    CAS  Google Scholar 

  80. Ohigashi, H., Nakamura, Y., and Murakami, A. (1998) Active Components and Antitumor Effects of Tropical Asian Foods,Food Style 2, 31–35.

    CAS  Google Scholar 

  81. Nakamura, Y., Kawamoto, N., Ohto, Y., Torikai, K., Murakami, A., and Ohigashi, H. (1999) A Diacetylenic Spiroketal Enol Ether Epoxide, AL-1, fromArtemisia lactiflora Inhibits 12-O-Tetradecanoylphorbol-13-acetate-induced Tumor Promotion Possibly by Suppression of Oxidative Stress,Cancer Lett. 140, 37–45.

    PubMed  CAS  Article  Google Scholar 

  82. Xu, C., Sun, X., Yang, J., Li, Q., Zhang, Y., and Dou, S. (1986) The Structure of Lactiflorasyne Isolated fromArtemisia lactiflora Wall,Yao Xue Xue Bao 21, 772–775.

    PubMed  CAS  Google Scholar 

  83. Fang, H., Hu, Q., Ma, Y., Sun, S., Xu, C., Zeng, X., Zhang, Q. and Zhou, Y. (1984) Constituents of Volatile Oils. IV. Chemical Constituents of the Volatile Oil from Bai Hua Hao (Artemisia lactiflora Wall),Zhongcaoyao 15, 99–101.

    CAS  Google Scholar 

  84. Matsumoto, T., Katsuya, H., Matsumoto, A., and Tokuda, H. (1991) Antitumor Capillin and/or Capillone from Plants, Japan Kokai Tokkyo Koho, 4 pp, Japanese Patent: JP 03287528 A2 19911218 Heisei.

  85. Glazunova, N.P., Katkevich, R.I., Korshunov, S.P., and Vereshchagin, D.I. (1967) Antibiotic Properties of Furan Derivatives of Capillin and Its Similar Compounds,Antibiotiki (USSR) 12, 767–771.

    CAS  Google Scholar 

  86. Xie, T., Liu, J., Liang, J.-Y., Zhang, Z.-M., and Wie, X.-L. (2005) Acetylenes and Flavonoids fromArtemisia scoparia II,Zhongguo Tianran Yaowu, 3, 86–89.

    CAS  Google Scholar 

  87. Konovalov, D.A., Konovalova, O.A., and Chelombit'ko, V.A. (1992) Chemical Composition of the Essential Oil ofArtemisia scoparia, Khim. Prirod. Soed. (USSR) 1, 142–143.

    Google Scholar 

  88. Spiridonov, N.A., Konovalov, D.A., and Arkhipov, V.V. (2005) Cytotoxicity of Some Russian Ethnomedicinal Plants and Plant Compounds,Phytother. Res. 19, 428–432.

    PubMed  CAS  Article  Google Scholar 

  89. Appendino, G., Menichini, F., and Puntillo, D. (1988) Aromatic Acetylenes and Flavanones fromArtemisia variabilis, Fitoterapia 59, 425–426.

    CAS  Google Scholar 

  90. De Pascual, T., Jr., Gonzales, M.S., De Dios, M.A., San Segundo, J.M., Vicente, S., and Bellido, I.S. (1981) Essential Oil ofSantolina rosmarinifolia Linnaeus,Riv. Ital. EPPOS 63, 355–356.

    Google Scholar 

  91. Whelan, L.C., and Ryan, M.F. (2004) Effects of the Polyacetylene Capillin on Human Tumor Cell Lines,Anticancer Res. 24, 2281–2286.

    PubMed  CAS  Google Scholar 

  92. Konovalov, D.A., and Chelombit'ko, V.A. (1991) The Composition of Essential Oil ofArtemisia scoparia Waldst et Kit. During Growth,Rastitel'nye Resursy (USSR) 27, 135–139.

    CAS  Google Scholar 

  93. Yano, K. (1975) Natural Acetylenes. 2. Variation in Acetylene Content of Different Ecotypes ofArtemisia capillaries, Phytochemistry 14, 1783–1784.

    CAS  Article  Google Scholar 

  94. Liu, W. (1999) Medicine for Treatment of Cancer, Faming Zhuanli Shenqing Gongkai Shuomingshu, 5pp., Chinese Patent: CN 1231922 A 19991020.

  95. Zhang Z., Cheng, D., Xu, H., Wu, Y., and Fan, J. (2004) The Bioactivities and Mechanism of Spiro Enol Ether Derivatives,Zhiwu Baohu Xuebao 31, 411–417.

    CAS  Google Scholar 

  96. Yin, B.-L., Fan, J.-F., Gao, Y., and Wu, Y.-L. (2003) Progress in Molecular Diversity of Tonghaosu and Its Analogs,ARKIVOC (Gainesville, FL, USA), 2, 70–83.

    Google Scholar 

  97. Fan, J.-F., Yin, B.-L., Zhang, Y.-F., Wu, Y.-L., and Wu, Y.-K. (2002) Molecular Diversity of Tonghaosu Analogs. Synthesis of 2-(Z)-Benzylidene-1,6,9-trioxa-spiro[4,5]dec-3-ene,Huaxue Xuebao 59, 1756–1762.

    Google Scholar 

  98. Windsor, J.B., Roux, S.J., Lloyd, A.M., and Thomas, C.E. (2005) Methods and Compositions for Increasing the Efficacy of Biologically-Active Ingredients Such as Antitumor Agents, PCT International, Application, 243 pp., WO 2005014777 A2 20050217.

  99. Chen, L., Xu, H.H., Yin, B.L., Xiao, C., Hu, T.S., and Wu, Y.L. (2004) Synthesis and Antifeeding Activities of Tonghaosu Analogues,J. Agric. Food Chem. 52, 6719–6723.

    PubMed  CAS  Article  Google Scholar 

  100. Trovato, A., Monforte, M.T., Rossitto, A., and Forestieri, A.M. (1996)In vitro Cytotoxic Effect of Some Medicinal Plants Containing Flavonoids,Boll. Chim. Farmaceut. (Italy) 135, 263–266.

    CAS  Google Scholar 

  101. Chen, L., Xu, H.H., Hu, T.S., and Wu, Y.L. (2005) Synthesis of Spiroketal Enol Ethers Related to Tonghaosu and Their Insecticidal Activities,Pest Manage. Sci. 61, 477–482.

    CAS  Article  Google Scholar 

  102. Xu, H., Zhang, Z., Cheng, D., Wu, Y., and Fan, J. (2000) Study on Bioactivity of Derivate of Spiro Enol Ether AgainstSpodoptera litura fabricius, Huazhong Nongye Daxue Xuebao 19, 543–546.

    CAS  Google Scholar 

  103. Fullas, F., Brown, D.M., Wani, M.C., Wall, M.E., Chagwedera, T.E., Farnesworth, N.R., Pezzuto, J.M., and Kinghorn, A.D. (1995) Gummiferol, a Cytotoxic Polyacetylene from the Leaves ofAdenia gummifera, J. Nat. Prod. 58, 1625–1628.

    PubMed  CAS  Article  Google Scholar 

  104. Jung, H.J., Min, B.S., Park, J.Y., Kim, Y.H., Lee, H.K., and Bae, K.H. (2002) Gymnasterkoreaynes A-F, Cytotoxic Polyacetylenes fromGymnaster koraiensis, J. Nat. Prod. 65, 897–901.

    PubMed  CAS  Article  Google Scholar 

  105. Bae, K.H., and Jung, H.J. (1999) Biological Polyacetylenes fromGymnaster koraiensis (Nakai) Kitamura. Recent Advances in Natural Products Research,Proceedings of the International Symposium on Recent Advances in Natural Products Research, 3rd, Seoul, Republic of Korea, pp. 37–41.

  106. Matsumoto, A., Katsuya, H., Matsumoto, T., and Tokuda, H. (1991) Antitumor Polyacetylene Extraction from Plants, Japan Kokai Tokyo Koho, 4 pp., Japanese Patent: JP 03287532 A2 19911218 Heisei.

  107. Ionkova, I., and Alferman, A. (2000) Use of DNA for Detection and Isolation of Potential Anticancer Agents from Plants,Farmatsiya (Sofia) 47, 10–16.

    CAS  Google Scholar 

  108. Nakamura, N., and Nemoto, M. (1997)cis-Dehydromatricaria Ester Concentration in Plant and Its Leaching ofSolidago altissima L.,Zasso Kenkyu 41, 359–361.

    CAS  Google Scholar 

  109. Lu, T., Menelaou, M.A., Vargas, D., Fronczek, F.R., and Fischer, N.H. (1993) Polyacetylenes and Diterpenes fromSolidago canadensis, Phytochemistry 32, 1483–1488.

    CAS  Article  Google Scholar 

  110. Lam, J., Christensen, L.P., Färch, T., and Thomasen, T. (1992) Acetylenes from the Roots ofSolidago Species,Phytochemistry 31, 4159–4161.

    CAS  Article  Google Scholar 

  111. Zdero, C., Bohlmann, F., King, R.M., and Robinson, H. (1988) Polyynes fromCalotis Species,Phytochemistry 27, 1105–1107.

    CAS  Article  Google Scholar 

  112. Marles, R.J., Farnsworth, N.R., and Neill, D.A. (1989) Isolation of a Novel Cytotoxic Polyacetylene from a Traditional Anthelmintic Medicinal Plant,Minquartia guianensis, J. Nat. Prod. 52, 261–266.

    CAS  Article  Google Scholar 

  113. Mell, C.D. (1937) Interesting Sources of Natural Dyestuffs,Text. Color. 59, 482–484.

    CAS  Google Scholar 

  114. Fort, D.M., King, S.R., Carlson, T.J., and Nelson, S.T. (2000) Minquartynoic acid fromCoula edulis, Biochem. Syst. Ecol. 28, 489–490.

    PubMed  CAS  Article  Google Scholar 

  115. Ito, A., Cui, B., Chavez, D., Chai, H.B., Shin, Y.G., Kawanishi, K., Kardono, L.B., Riswan, S., Farnsworth, N.R., Cordell, G.A.,et al. (2001) Cytotoxic Polyacetylenes from the Twigs ofOchanostachys amentacea, J. Nat. Prod., 64, 246–248.

    PubMed  CAS  Article  Google Scholar 

  116. Rashid, M.A., Gustafson, K.R., Cardellina, J.H., II, and Boyd, M.R. (2001) Absolute Stereochemistry and Anti-HIV Activity of Minquartynoic Acid, a Polyacetylene fromOchanostachys amentacea, Nat. Prod. Lett. 15, 21–26.

    PubMed  CAS  Google Scholar 

  117. El-Seedi, H.R., Hazell, A.C., and Torssell, K.B.G. (1994) Triterpenes, Lichexanthone and an Acetylenic Acid fromMinquartia guianensis, Phytochemistry 35, 1297–1299.

    CAS  Article  Google Scholar 

  118. Rasmussen, H.B., Christensen, S.B., Kvist, L.P., Kharazmi, A., and Huansi, A.G. (2000) Absolute Configuration and Antiprotozoal Activity of Minquartynoic Acid,J. Nat. Prod. 63, 1295–1296.

    PubMed  CAS  Article  Google Scholar 

  119. Zidorn, C., Joehrer, K., Ganzera, M., Schubert, B., Sigmund, E.M., Mader, J., Greil, R., Ellmerer, E.P., and Stuppner, H. (2005) Polyacetylenes from the Apiaceae Vegetables Carrot, Celery, Fennel, Parsley, and Parsnip and Their Cytotoxic Activities,J. Agric. Food Chem. 53, 2518–2523.

    PubMed  CAS  Article  Google Scholar 

  120. Hu, C.Q., Chang, J.J., and Lee, K.H. (1990) Antitumor Agents. 115. Seselidiol, a New Cytotoxic Polyacetylene fromSeseli mairei, J. Nat. Prod. 53, 932–935.

    PubMed  CAS  Google Scholar 

  121. Perry, N.B., Span, E.M., and Zidorn, C. (2001) Aciphyllal—A C34-Polyacetylene fromAciphylla scott-thomsonii (Apiaceae),Tetrahedron Lett. 42, 4325–4328.

    CAS  Article  Google Scholar 

  122. Patnam, R., Touaibia, M., Liu, B., and Roy, R. (2005) Studies Toward the Total Synthesis of Aciphyllal, a Novel C34-Polyacetylene, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, Aug. 28–Sept. 1, ORGN-172.

  123. Takaishi, Y., Okuyama, T., Nakano, K., Murakami, K., and Tomimatsu, T. (1991) Absolute Configuration of a Triolacetylene fromCirsium japonicum, Phytochemistry 30, 2321–2324.

    CAS  Article  Google Scholar 

  124. Takaishi, Y., Okuyama, T., Masuda, A., Nakano, K., Murakami, K., and Tomimatsu, T. (1990) Acetylenes fromCirsium japonicum, Phytochemistry 29, 3849–3852.

    CAS  Article  Google Scholar 

  125. Fei, Z., Kong, L., and Peng, S. (2001) Progress in Chemical and Pharmacological Studies onCirsium japonicum, Zhongcaoyao 32, 664–667.

    CAS  Google Scholar 

  126. Yim, S.H., Kim, H.J., and Lee, I.S. (2003) A Polyacetylene and Flavonoids fromCirsium rhinoceros, Archiv. Pharm. Res. 26, 128–131.

    CAS  Google Scholar 

  127. Ohashi, K., Winarno, H., Mukai, M., Inoue, M., Prana, M.S., Simanjuntak, P., and Shibuya, H. (2003) Indonesian Medicinal Plants. XXV. Cancer Cell Invasion Inhibitory Effects of Chemical Constituents in the Parasitic PlantScurrula atropurpurea (Loranthaceae),Chem. Pharm. Bull. 51, 343–345.

    PubMed  CAS  Article  Google Scholar 

  128. Winarno, H., Ohashi, K., and Shibuya, H. (2003) Chemical Study on the Parasitic PlantScurrula atropurpurea (Loranthaceae), an Indonesian Medicinal Plant,Fukuyama Daigaku Yakugakubu Kenkyu Nenpo 21, 13–29.

    CAS  Google Scholar 

  129. Ohashi, K., Winarno, H., Mukai, M., and Shibuya, H. (2003) Preparation and Cancer Cell Invasion Inhibitory Effects of C16-Alkynic Fatty Acids,Chem. Pharm. Bull. 51, 463–466.

    PubMed  CAS  Article  Google Scholar 

  130. Zhang, H.-J., Sydara, K., Tan, G.T., Ma, C., Southavong, B., Soejarto, D.D., Pezzuto, J.M., and Fong, H.H.S. (2004) Bioactive Constituents fromAsparagus cochinchinensis, J. Nat. Prod. 67, 194–200.

    PubMed  CAS  Article  Google Scholar 

  131. Terada, K., Honda, C., Suwa, K., Takeyama, S., Oku, H., and Kamisako, W. (1995) Acetylenic Compounds Isolated from Cultured Cells ofAsparagus officinalis, Chem. Pharm. Bull. 43, 564–566.

    PubMed  CAS  Google Scholar 

  132. Terada, K., Suwa, K., Takeyama, S., Honda, C., and Kamisako, W. (1996) Biosynthesis of the Acetylenic Compounds in Cultured Cells ofAsparagus officinalis from D-and13C-Labeled Phenylalanines,Biol. Pharm. Bull. 19, 748–751.

    PubMed  CAS  Google Scholar 

  133. Resch, M., Heilmann, J., Steigel, A., and Bauer, R. (2001) Further Phenols and Polyacetylenes from the Rhizomes ofAtractylodes lancea and Their Anti-inflammatory Activity,Planta Med. 67, 437–442.

    PubMed  CAS  Article  Google Scholar 

  134. Nakai, Y., Kido, T., Hashimoto, K., Kase, Y., Sakakibara, I., Higuchi, M., and Sasaki, H. (2003) Effect of the Rhizomes ofAtractylodes lancea and Its Constituents on the Delay of Gastric Emptying,J. Ethnopharmacol. 84, 51–55.

    PubMed  Article  Google Scholar 

  135. Nishikawa, Y., Yasuda, I., Watanabe, Y., and Seto, T. (1976) Studies on the Components of Atractylodes. II. New Polyacetylenic Compounds in the Rhizome ofAtractylodes lancea De Candolle var. chinensisKitamura, Yakugaku Zasshi 96, 1322–1326.

    PubMed  CAS  Google Scholar 

  136. Nakajima, K., Yanagisawa, T., Iimura, F., and Mihashi, H. (1992) Anti-inflammatory and Antiallergy Agents Containing Polyacetylenes, Japan Kokai Tokkyo Koho, 6pp., Japanese Patent: JP 04208222 A2 199920729 Heisei.

  137. Gonzalez, A.G., Estevez-Reyes, R., Estevez-Braun, A., Ravelo, A.G., Jimenez, I.A., Bazzocchi, I.L., Aguilar, M.A., and Moujir, L. (1997) Biological Activities of SomeArgyranthemum Species,Phytochemistry 45, 963–967.

    PubMed  CAS  Article  Google Scholar 

  138. Badisa, R.B., Couladis, M., Tsortanidou, V., Chaudhuri, S.K., Walker, L., Pilarinou, E., Santos-Guerra, A., and Francisco-Ortega, J. (2004) Pharmacological Activities of SomeArgyranthemum Species Growing in the Canary Islands,Phytother. Res. 18, 763–767.

    PubMed  CAS  Article  Google Scholar 

  139. Fujioka, T., Furumi, K., Fujii, H., Okabe, H., Mihashi, K., Nakano, Y., Matsunaga, H., Katano, M., and Mori, M. (1999) Antiproliferative Constituents from Umbelliferae Plants. V. A New Furanocoumarin and Falcarindiol Furanocoumarin Ethers from the Root ofAngelica japonica, Chem. Pharm. Bull. 47, 96–100.

    PubMed  CAS  Google Scholar 

  140. Furumi, K., Fujioka, T., Fujii, H., Okabe, H., Nakano, Y., Matsunaga, H., Katano, M., Mori, M., and Mihashi, K. (1998) Novel Antiproliferative Falcarindiol Furanocoumarin Ethers from the Root ofAngelica japonica, Bioorg. Med. Chem. Lett. 8, 93–96.

    PubMed  CAS  Article  Google Scholar 

  141. Akihisa, T., Tamura, T., Matsumoto, T., Kokke, W.C.M.C., and Yokota, T. (1989) Isolation of Acetylenic Sterols from a Higher Plant. Further Evidence That Marine Sterols Are Not Unique,J. Org. Chem. 54, 606–610.

    CAS  Article  Google Scholar 

  142. Jeon, G.-C., Park, M.-S., Yoon, D.-Y., Shin, C.-H., Sin, H.-S., and Um, S.-J. (2005) Antitumor Activity of Spinasterol Isolated fromPueraria Roots,Exp. Mol. Med. (S. Korea) 37, 111–120.

    CAS  Google Scholar 

  143. Rodriguez, J.B., Gros, E.G., Bertoni, M.H., and Cattaneo, P. (1996) The Sterols ofCucurbita moschata (“calabacita”) Seed Oil,Lipids 31, 1205–1208.

    PubMed  CAS  Article  Google Scholar 

  144. Xu, L., Liu, J., Min, D., Wang, S., Zhang, Z., Guo, D., and Zheng, K. (1998) chemical Constituents ofConyza blinii Levl,Zhongguo Zhong Yao Za Zhi 23, 293–295.

    PubMed  CAS  Google Scholar 

  145. Yang, S., Zhong, Y., Luo, H., Ding, X., and Zuo, C. (1999) Studies on Chemical Constituents of the Roots ofGypsophila oldhamiana Miq,Zhongguo Zhong Yao Za Zhi 24, 680–681.

    PubMed  CAS  Google Scholar 

  146. Herath, H.M., Athukoralage, P.S., and Jamie, J.F. (2001) A New Oleanane Triterpenoid fromGordonia ceylanica, Nat. Prod. Lett. 15, 339–344.

    PubMed  CAS  Google Scholar 

  147. Pech, G.G., Brito, W.F., Mena, G.J., and Quijano, L. (2002) Constituents ofAcacia cedilloi andAcacia gaumeri. Revised Structure and Complete NMR Assignments of Resinone,Z. Naturforsch, 57C, 773–776.

    Google Scholar 

  148. Villasenor, I.M., and Domingo, A.P. (2000) Anticarcinogenicity Potential of Spinasterol Isolated from Squash Flowers,Teratog. Carcinog. Mutagen. 20, 99–105.

    PubMed  CAS  Article  Google Scholar 

  149. Anchel, M. (1967) Acetylenic Compounds from Fungi,J. Am. Chem. Soc. 74, 1588–1590.

    Article  Google Scholar 

  150. Jones, E.R.H. (1966) Natural Polyacetylenes and Their Precursors,Chem. Br. 2, 6–13.

    CAS  Google Scholar 

  151. McAfee, B.J., and Taylor, A. (1999) A Review of the Volatile Metabolites of Fungi Found on Wood Substrates,Nat. Toxins 7, 283–303.

    PubMed  CAS  Article  Google Scholar 

  152. Herbst, P. (1960) The Alkyne Acids from Fungi,Planta Med. 8, 394–402.

    CAS  Google Scholar 

  153. Varadi, J., and Somogyi, J. (1966) Vegetable Antimicrobial Substances,Gyogyszereszet (Budapest) 10, 408–414.

    CAS  Google Scholar 

  154. Stickings, C.E., Raistrick, H. (1956) Chemistry of the Fungi,Annu. Rev. Biochem. 25, 225–256.

    PubMed  CAS  Article  Google Scholar 

  155. Niimura, Y., and Hatanaka, S. (1977) Biochemical Studies on Nitrogen Compounds of Fungi. Part 15. Two γ-Glutamylpeptides of Acetylenic Amino Acids inTricholomopsis rutilans Phytochemistry 16, 1435–1436.

    CAS  Article  Google Scholar 

  156. Okishi, H. (1977) 2-γ-Glutamylamino-4-hexynic Acid and 2-γ-Glutamylamino-3-hydroxy-4-hexynic Acid, Japan Kokai Tokkyo Koho, 4 pp., Japanese Patent: JP 52054084 19770502 Showa.

  157. Hatanaka, S.I., Niimura, Y., and Taniguchi, K. (1973) Biochemical Studies on Nitrogen Compounds of Fungi. V. Another New Amino Acid of the Acetylene Type fromTricholomopsis rutilans, Z. Naturforsch. 28C, 475–478.

    Google Scholar 

  158. Patel, R.N. (2001) Biocatalytic Synthesis of Intermediates for the Synthesis of Chiral Drug Substances,Curr. Opin. Biotechnol. 12, 587–604.

    PubMed  CAS  Article  Google Scholar 

  159. Abdulganeva, S.A., and Erzhanov, K.B. (1991) Acetylenic Amino Acids,Uspekhi Khimii (USSR) 60, 1318–1342.

    CAS  Google Scholar 

  160. Metcalf, B.W., and Jung, M. (1976) Acetylene Derivatives of Amino Acids, 9 pp., U.S. Patent: 3,959,356.

  161. Sung, M.-L., Fowden, L., Millington, D.S., and Sheppard, R.C. (1969) Acetylenic Amino Acids fromEuphoria longan, Phytochemistry 8, 1227–1233.

    CAS  Article  Google Scholar 

  162. Takada, Y., Greig, N.H., Vistica, D.T., Rapoport, S.I., and Smith, Q.R. (1991) Affinity of Antineoplastic Amino Acid Drugs for the Large Neutral Amino Acid Transporter of the Blood-Brain Barrier,Cancer Chemother. Pharmacol. 29, 89–94.

    PubMed  CAS  Article  Google Scholar 

  163. Metcalf, B.W., and Jung, M. (1978) α-Acetylenic Amino Acids Useful as Inhibitors of Aromatic Amino Acid Decarboxylase, Belgrade, 40 pp., Yugoslavian Patent: BE 868596 19781016; CAN 90:204493.

  164. Washtien, W.S. (1977) Acetylenic Suicide Inactivators, 163 pp.Diss. Abstr. Int. B 37 (12, Pt. 1), 6109, CAN 87:97992.

    Google Scholar 

  165. Washtien, W.S. (1984) Suicide Substrates, Mechanism-Based Enzyme Inactivators: Recent Developments,Annu. Rev. Biochem. 53, 493–535.

    Article  Google Scholar 

  166. Whitehead, R. (1999) Natural Product Chemistry,Annu. Rep. Prog. Chem., Sec. B: Org. Chem. 95, 183–205.

    CAS  Article  Google Scholar 

  167. Jenkins, D.E. (1950) Mycomycin: A New Antibiotic with Tuberculostatic Properties,J. Lab. Clin. Med. 36, 841–842.

    PubMed  CAS  Google Scholar 

  168. King, D.S. (1950) Tuberculosis,New Engl. J. Med. 243, 530–536.

    PubMed  CAS  Article  Google Scholar 

  169. Chain, E.B. (1958) Chemistry and Biochemistry of New Antibiotics,G. Ital. Chemioter. 4, 213–242.

    CAS  Google Scholar 

  170. Beer, J. (1955) Natural Alkynes,Wiad. Chem. (Polska) 9, 460–481.

    CAS  Google Scholar 

  171. Du, L., and Hu, W. (1997) Hepatic Artery Target Embolic Chemotherapy in Treatment of Late-Stage Primary Hepatocellular Carcinoma,Shaanxi Yixue Zazhi 26, 9–11.

    CAS  Google Scholar 

  172. Veljkovic, V., and Lalovic, D.I. (1978) Correlation Between the Carcinogenicity of Organic Substances and Their Spectral Characteristics,Experientia 34, 1342–1343.

    PubMed  CAS  Article  Google Scholar 

  173. Schlingmann, G., Milne, L., Pearce, C.J., Border, D.B., Greenstein, M., Maiese, W.M., and Carter, G.T. (1995) Isolation, Characterization and Structure of a New Allenic Polyene Antibiotic Produced by Fungus LL-07F275,J. Antibiot. 48, 375–379.

    PubMed  CAS  Google Scholar 

  174. Jones, E.R.H., Leeming, P.R., and Remers, W.A. (1960) Chemistry of the Higher Fungi. XI. Polyacetylenic Metabolites ofDrosophila subatrata, J. Chem. Soc., 2257–2263.

  175. Kavanagh, F., Hervey, A., and Robbins, W.J. (1952) Antibiotic Substances from Basidiomycetes. IX.Drosophila subatrata, Proc. Nat. Acad. Sci. USA 38, 555–560.

    PubMed  CAS  Article  Google Scholar 

  176. Ahmed, M., Hearn, M.T.W., Jones, E.R.H., and Thaller, V. (1977) Natural Acetylenes. Part LI. Biosynthetic Studies with C18 Acetylenic Precursors in Fungal Cultures. Origin of the Carbon Skeletons of Mycomycin and Drosophilins C and D,J. Chem. Res. 5, 125–131.

    Google Scholar 

  177. Anchel, M. (1953) Characterization of Drosophilin C as a Polyacetylene,Archiv. Biochem. Biophys. 43, 127–135.

    CAS  Article  Google Scholar 

  178. Anchel, M., Hervey, A., and Robbins, W.J. (1950) Antibiotic Substances from Basidiomycetes. VII.Clitocybe illudens, Proc. Nat. Acad. Sci. USA 36, 300–305.

    PubMed  CAS  Article  Google Scholar 

  179. Anchel, M. (1954) Some Naturally Occurring Antibiotic Polyacetylenes,Trans. N.Y. Acad. Sci. 16, 337–342.

    PubMed  CAS  Google Scholar 

  180. Asheshov, I.N., Strelitz, F., Hall, E.A., and Flon, H. (1954) A Survey of Actinomycetes for Antiphage Activity,Antibiot. Chemother (Washington DC) 4, 380–394.

    CAS  Google Scholar 

  181. Garlaschelli, L., Magistrali, E., Vidari, G., and Zuffardi, O. (1995) Fungal Metabolites. 38. Tricholomenyns A and B, Novel Antimitotic Acetylenic Cyclohexenone Derivatives from the Fruiting Bodies ofTricholoma acerbum, Tetrahedron Lett. 36, 5633–5636.

    CAS  Google Scholar 

  182. Garlaschelli, L., Vidari, G., and Vita-Finzi, P. (1996) Fungal Metabolites. 41. Tricholomenyns C, D, and E, Novel Dimeric Dienyne Geranyl Cyclohexenones from the Fruiting Bodies ofTricholoma acerbum, Tetrahedron Lett. 37, 6223–6226.

    CAS  Article  Google Scholar 

  183. Baeuerle, J., Anke, T., Jente, R., and Bosold, F. (1982) antibiotics from Basidiomycetes. XVI. Antimicrobial and Cytotoxic Polyines fromMycena viridimarginata Karst,Arkiv. Mikrobiol. 32, 194–196.

    Google Scholar 

  184. Jente, R., Bosold, F., Bauerle, J., and Anke, T. (1985) Tetraacetylenic Metabolites fromMycena viridimarginata, Phytochemistry 24, 553–559.

    CAS  Article  Google Scholar 

  185. Hautzel, R., Anke, H., and Sheldrick, W.S. (1990) Mycenon, a New Metabolite from aMycena Species TA 87202 (Basidiomycetes) as an Inhibitor of Isocitrate Lyase.J. Antibiot. 43, 1240–1244.

    PubMed  CAS  Google Scholar 

  186. Takahashi, A., Endo, T., and Nozoe, S. (1992) Repandiol, a New Cytotoxic Diepoxide from the MushroomsHydnum repandum andH. repandum var.album, Chem. Pharm. Bull. 40, 3181–3184.

    PubMed  CAS  Google Scholar 

  187. Nozoe, S., Takahashi, A., and Endo, T. (1993) Preparation of Repandiol Derivatives as Antitumor Agents, Japan Kokai Tokkyo Koho, 8 pp., Japanese Patent: JP 05247017 A2 19930924 Heisei.

  188. Conklin, J.E., and Millard, J.T. (2000) DNA Interstrand Cross-Linking by a Diepoxide Mycotoxin, Book of Abstracts, pp. 26–30, 219th American Chemical Society National Meeting, San Francisco, March.

  189. Millard, J.T., Katz, J.L., Goda, J., Frederick, E.D., Pierce, S.E., Speed, T.J., and Thamattoor, D.M. (2004) DNA Interstrand Cross-Linking by a Mycotoxic Diepoxide,Biochimie 86, 419–423.

    PubMed  CAS  Article  Google Scholar 

  190. Lee, M.D., Dunne, T.S., Siegel, M.M., Chang, C.C., Morton, G.O., and Borders, D.B. (1987) Calichemicins, a Novel Family of Antitumor Antibiotics. 1. Chemistry and Partial Structure of Calichemicin γ1,J. Am. Chem. Soc. 109, 3464–3466.

    CAS  Article  Google Scholar 

  191. Lee, M.D., Dunne, T.S., Chang, C.C., Siegel, M., Morton, G.O., Ellestad, G.E., McGahren, W.J., and Borders, D.B. (1993) The Calicheamicins, a Family of Extremely Potent Antitumor Antibiotics,Youji Huaxue 13, 166–170.

    CAS  Google Scholar 

  192. Konishi, M., Ohkuma, H., Saitoh, K. Kawaguchi, H., Golik, J., Dubay, G., Groenewold, G., Krishnan, B., and Doyle, T.W. (1985) Esperamicins, a Novel Class of Potent Antitumor Antibiotics. I. Physicochemical Data and Partial Structure,J. Antibiot. 38, 1605–1609.

    PubMed  CAS  Google Scholar 

  193. Lee, M.D., Dunne, T.S., Chang, C.C., Ellestad, G.A., Seigel, M.M., Morton, G.O., McGahren, W.J., and Borders, D.B. (1987) Calichemicins, a Novel Family of Antitumor Antibiotics. 2. Chemistry and Structure of Calichemicin-γ1.J. Am. Chem. Soc. 109, 3466–3468.

    CAS  Article  Google Scholar 

  194. Golik, J., Dubay, G., Groenwold, G., Kawaguchi, M., Konishi, M., Krishnan, B., Ohkuma, H., Saitoh, K., and Doyle, T.W. (1987) Esperamicins, a Novel Class of Potent Antitumor Antibiotics. 3. Structures of Esperamicins A1, Esperamicin A2, and Esperamicin A1b,J. Am. Chem. Soc. 109, 3462–3464.

    CAS  Article  Google Scholar 

  195. Golik, J., Clardy, J., Dubay, G., Groenewold, G., Kawaguchi, H., Konishi, M., Krishnan, B., Ohkuma, M., Saitoh, K., and Doyle, T.W. (1987) Esperamicins, a Novel Class of Potent Antitumor Antibiotics. 2. Structure of Esperamicin X,J. Am. Chem. Soc. 109, 3461–3462.

    CAS  Article  Google Scholar 

  196. Lee, M.D., Ellestad, G.A., and Borders, D.B. (1991) Calicheamicins—Discovery, Structure, Chemistry, and Interaction with DNA,Acc. Chem. Res. 24, 235–243.

    CAS  Article  Google Scholar 

  197. Beutler, J.A., Clark, P., Alvarado, A.B., and Golik, J. (1994) Esperamicin P, the Tetrasulfide Analog of Esperamicin A1,J. Nat. Prod. 57, 629–633.

    PubMed  CAS  Article  Google Scholar 

  198. Konishi, M., Ohkuma, H., Matsumoto, K., Tsuno, T., Kamei, H., Miyaki, T., Oki, T., Kawaguchi, H., Vanduyne, G.D., and Clardy, J. (1989) Dynemicin a, a Novel Antibiotic with the Anthraquinone and 1,5-Diyn-3-ene Subunit,J. Antibiot. 42, 1449–1452.

    PubMed  CAS  Google Scholar 

  199. Otani, T., Minami, Y., Sakawa, K., and Yoshida, K. (1991) Isolation and Dharacterization of Non-protein Chromophore and Its Degradation Product from Antibiotic C-1027,J. Antibiot. 44, 564–568.

    PubMed  CAS  Google Scholar 

  200. Hu, J.L., Xue, Y.C., Xie, M.Y., Zhang, R., Otani, T., Minami, Y., Yamada, Y., and Marunaka, T. (1988) A New Macromolecular Antitumor Antibiotic, C-1027. I. Discovery, Taxonomy of Producing Organism, Fermentation and Biological Activity,J. Antibiot. 41, 1575–1579.

    PubMed  CAS  Google Scholar 

  201. Shen, B., Liu, W., Christenson, S.D., and Standage, S. (2000) TheStreptomyces globisporus Gene Cluster Encoding Enzymes of Biosynthesis of the Enediyne Antitumor Antibiotic C-1027, PCT International Application, 160 pp., WO 2000040596 A1 20000713.

  202. Hu, J., and Zhen, Y. (1989) Antibiotic C-1027 fromStreptomyces for Use as a Neoplasm Inhibitor, Faming Zhuanli Shenqing Gongkai Shuomingshu, 15 pp., Chinese Patent: CN 1037539 A 19891129.

  203. Sugimoto, Y., Otani, T., Oie, S., Wierzba, K., and Yamada, Y. (1990) Mechanism of Action of a New Macromolecular Antitumor Antibiotic, C-1027,J. Antibiot. 43, 417–421.

    PubMed  CAS  Google Scholar 

  204. Zhen, Y., Ming, X., Yu, B., Otani, T., Saito, H., and Yamada, Y. (1989) A New Macromolecular Antitumor Antibiotic, C-1027. III. Antitumor Activity,J. Antibiot. 42, 1294–1298.

    PubMed  CAS  Google Scholar 

  205. Liu, Y.-P., Li, Q.-S., Huang, Y.-R., and Liu, C.-X. (2005) Tissue Distribution and Excretion of125I-Lidamycin in Mice and Rats,World J. Gastroenterol. 11, 3281–3284.

    PubMed  CAS  Google Scholar 

  206. Liu, Y.-P., Li, Q.-S., Huang, Y.-R., Zhou, M.-J., and Liu, C.-X. (2005) Pharmacokinetics of C-1027 in Mice as Determined by TCA-RA Method,World J. Gastreonterol. 11, 717–720.

    CAS  Google Scholar 

  207. Edo, K., Saito, K., Matsuda, Y., Akiyamamurai, Y., Mizugaki, M., Koide, Y., and Ishida, N. (1991) Neocarzinostatin-Selective Tryptophan Oxidation and Neocarzinostatin-Chromophore Binding to Apo-Neocarzinostatin,Chem. Pharm. Bull. 39, 170–176.

    PubMed  CAS  Google Scholar 

  208. Kuromizu, K., and Maeda, H. (1997) Chemical Structure of the Apoprotein of Neocarzinostatin, inNeocarzinostatin (Maeda, H., Edo, K., and Ishida, N., eds), pp. 3–22, Springer, Tokyo.

    Google Scholar 

  209. Myers, A.G., Proteau, P.J., and Handel, T.M. (1988) Stereochemical Assignment of Neocarzinostatin Chromophore—Structures of Neocarzinostatin Chromophore Methyl Thioglycolate Adducts,J. Am. Chem. Soc. 110, 7212–7214.

    CAS  Article  Google Scholar 

  210. Kudo, K., Suto, T., Koide, Y., Edo, K., and Ishida, N. (1982) Production of a Free Chromophore Component of Neocarzinostatin (NCS) in the Culture Filtrate ofStreptomyces carzinostaticus var. F-41,J. Antibiot. 35, 1111–1115.

    PubMed  CAS  Google Scholar 

  211. Koide, Y., Ishii, F., Hasuda, K., Koyama, Y., Edo, K., Katamine, S., Kitame, F., and Ishida, N. (1980) Isolation of a Non-protein Component and a Protein Component from Neocarzinostatin (NCS) and Their Biological Activities,J. Antibiot. 33, 342–346.

    PubMed  CAS  Google Scholar 

  212. Ishida, N., Miyazaki, K., Kumagai, K., Rikimaru, M., and Kuroya, M. (1967) Neocarzinostatin Produced byStreptomyces carzinostaticus var.neocarzinostaticus, 7 pp., U.S. Patent 3,334,022.

  213. Maeda, H., Kumagai, K., and Ishida, N. (1966) Characterization of Neocarzinostatin,J. Antibiot. 19, 253–259.

    PubMed  CAS  Google Scholar 

  214. Kawata, S., Ashizawa, S., and Hirama, M. (1997) Synthetic Study of Kedarcidin Chromophore: Revised Structure,J. Am. Chem. Soc. 119, 12012–12013.

    CAS  Article  Google Scholar 

  215. Hofstead, S.J., Matson, J.A., Malacko, A.R., and Marquardt, H. (1992) Kedarcidin, a New Chromoprotein Antitumor Antibiotic. II. Isolation, Purification and Physico-chemical Properties,J. Antibiot. 45, 1250–1254

    PubMed  CAS  Google Scholar 

  216. Lam, K.S., Hesler, G.A., Gustavson, D.R., Crosswell, A.R., Veitch, J.M., Forenza, S., and Tomita, K. (1991) Kedarcidin, a New Chromoprotein Antitumor Antibiotic. I. Taxonomy of Producing Organism, Fermentation and Biological Activity,J. Antibiot. 44, 472–478.

    PubMed  CAS  Google Scholar 

  217. Leet, J.E., Schroeder, D.R., Hofstead, S.J., Golik, J., Colson, K.L., Huang, S., Klohr, S.E., Doyle, T.W., and Matson, J.A. (1992) Kedarcidin, a New Chromoprotein Antitumor Antibiotic—Structure Elucidation of Kedarcidin Chromophore,J. Am. Chem. Soc. 114, 7946–7948.

    CAS  Article  Google Scholar 

  218. Leet, J.E., Schroeder, D.R., Langley, D.R., Colson, K.L., Huang, S., Klohr, S.E., Lee, M.S., Golik, J., and Hofstead, S.J. (1993) Chemistry and Structure Elucidation of the Kedarcidin Chromophore,J. Am. Chem. Soc. 115, 8432–8443.

    CAS  Article  Google Scholar 

  219. Schroeder, D.R., Colson, K.L., Klohr, S.E., Zein, N., Langley, D.R., Lee, M.S., Matson, J.A., and Doyle, T.W. (1994) Isolation, Structure Determination, and Proposed Mechanism of Action for Artifacts of Maduropeptin Chromophore,J. Am. Chem. Soc. 116, 9351–9352.

    CAS  Article  Google Scholar 

  220. Hanada, M., Ohkuma, H., Yonemoto, T., Tomita, K., Ohbayashi, M., Kamei, H., Miyaki, T., Konishi, M., Kawaguchi, H., and Forenza, S. (1991) Maduropeptin, a Complex of New Macromolecular Antitumor Antibiotics,J. Antibiot., 44, 403–414.

    PubMed  CAS  Google Scholar 

  221. Ando, T., Ishii, M., Kajiura, T., Kameyama, T., Miwa, K., and Suguira, Y. (1998) A New Non-protein Enediyne Antibiotic N1999A2: Unique Enediyne Chromophore Similar to Neocarzinostatin and DNA Cleavage Feature,Tetrahedron Lett., 39, 6495–6498.

    CAS  Article  Google Scholar 

  222. Ishii, M., Ando, T., Kajiura, T., Kameyama, T., and Nihei, Y. (1995) Antitumoric ntibiotic N1999A2 Manufacture withStreptoverticillium, Kokai Tokkyo Koho, 9 pp., Japanese Patent: JP 07291955 A2 19951107 Heisei.

  223. Ando, T., Ishii, M., Kajiura, T., Kameyama, T., and Miwa, K. (1996) Structure of the Novel Enediyne Antibiotic N1999A2,Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 38, 487–492.

    Google Scholar 

  224. Ishida, N., Miyazaki, K., Kumagai, K., and Rikimaru, M. (1965) Neocarzinostatin, and Antitumor Antibiotic of High Molecular Weight—Isolation, Physicochemical Properties and Biological Activities,J. Antibiot., 18, 68–74.

    PubMed  CAS  Google Scholar 

  225. Zein, N. (1996) Kedarcidin and Maduropeptin, Two Novel Chromoproteins with Potent Antitumor Activities,NATO ASI Ser. Ser. C, 479, 53–63.

    CAS  Google Scholar 

  226. Lam, K.S., Hesler, G.A., Gustavson, D.R., Crosswell, A.R., Veitch, J.M., Forenza, S., and Tomita, K. (1991) Kedarcidin, a New Chromoprotein Antitumor Antibiotic. 1. Taxonomy of Producing Organism, Fermentation and Biological Activity,J. Antibiot. 44, 472–478.

    PubMed  CAS  Google Scholar 

  227. Zein, N., Casazza, A.M., Doyle, T.W., Leet, J.E., Schroeder, D.R., Solomon, W., and Nadler, S.G. (1993) Selective Proteolytic Activity of the Antitumor Agent Kedarcidin,Proc. Nat. Acad. Sci. USA, 90, 8009–8012.

    PubMed  CAS  Article  Google Scholar 

  228. Hanada, M., Ohkuma, H., Yonemoto, T., Tomita, K., Ohbayashi, M., Kamei, H., Miyaki, T., Konishi, M., Kawaguchi, H., and Forenza, S. (1991) Maduropeptin, a Complex of New Macromolecular Antitumor Antibiotics,J. Antibiot, 44, 403–414.

    PubMed  CAS  Google Scholar 

  229. Takeshita, M., Kappen, L.S., Grollman, A.P., Eisenberg, M., and Goldberg, I.H. (1981) Strand Scission of Deoxyribonucleic Acid by Neocarzinostatin, Auromomycin, and Bleomycin: Studies on Base Release and Nucleotide Sequence Specificity,Biochemistry 20, 7599–7606.

    PubMed  CAS  Article  Google Scholar 

  230. Galm, U., Hager, M.H., Van, Lanen, S.G., Ju, J., Thorson, J.S., and Shen, B. (2005) Antitumor Antibiotics: Bleomycin, Enediynes, and Mitomycin,Chem. Rev., 105, 739–758.

    PubMed  CAS  Article  Google Scholar 

  231. Shen, B., Liu, W., and Nonaka, K. (2003) Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents,Curr. Med. Chem., 10, 2317–2325.

    PubMed  CAS  Article  Google Scholar 

  232. Jones, G.B., and Fouad, F.S. (2002) Designed Enediyne Antitumor Agents,Curr. Pharm. Design, 8, 2415–2440.

    CAS  Article  Google Scholar 

  233. Schreiner, P.R., Navarro-Vazquez, A., and Prall, M. (2005) Computational Studies on the Cyclization of Enediynes, Enyne-Allenes, and Related Polyunsaturated Systems,Acc, Chem. Res. 38, 29–37.

    CAS  Article  Google Scholar 

  234. Wilmotte, A. (1994) Molecular Evolution and Taxonomy of the Cyanobacteria,Adv. Photosynthesis, 1, 1–25.

    CAS  Google Scholar 

  235. Skulberg, O.M., Carmichael, W.W., Codd, G.A., and Skulberg, R. (1993) Toxonomy of Toxic Cyanophyceae (Cyanobacteria), inAlgal Toxins in Seafood and Drinking Water (Falconer, I.P., ed.). pp. 145–164, Academic, London.

    Google Scholar 

  236. Inoue, I. (2004) Biological Evolution and Symbiosis,Iden, 58, 29–35.

    CAS  Google Scholar 

  237. Maeda, H., Higashibada, D., Usui, C., and Ueno, K. (2003) Study on Microorganism Evolution by DNA Analysis,Gekkan Chikyu Gogai, 42, 193–196.

    CAS  Google Scholar 

  238. Kuroiwa, T. (2000) Orgin and Evolution of Chloroplasts,Hikari ga Hiraku Seimei Kagaku, 2, 89–105.

    CAS  Google Scholar 

  239. Adams, D.G. (2000) Cyanobacterial Phylogeny and Development: Questions and Challenges,Prokaryotic Dev., 4, 51–81.

    Google Scholar 

  240. Burja, A.M., Banaigs, B., Abou-Mansour, E., Grant, B.J., and Wright, P.C. (2001) Marine Cyanobacteria: A Prolific Source of Natural Products,Tetrahedron, 57, 9347–9377.

    CAS  Article  Google Scholar 

  241. Nagatsu, A. (1997) Components of Blue-green Algae,Nagoyashiritsu Daigaku Yakugakubu Kenkyu Nenpo, 44, 1–12.

    Google Scholar 

  242. Kent, U.M., Jushchyshyn M.I., and Hollenberg, P.F. (2001) Mechanism-based Inactivators as Probes of Cytochrome P450 Structure and Function,Curr. Drug Metabol., 2, 215–243.

    CAS  Article  Google Scholar 

  243. Macdonald, R.L., and Greenfield, L.J. (1997) Mechanisms of Action of New Antiepileptic Drugs,Curr. Opin. Neurol, 10, 121–128.

    PubMed  CAS  Article  Google Scholar 

  244. Kalviainen, R., Keranen, T., and Riekkinen, P.J. (1993) Place of Newer Antiepileptic Drugs in the Treatment of Epilepsy,Drugs 46, 1009–1024.

    PubMed  CAS  Google Scholar 

  245. Berry, D.E., Chan, J.A., Mackenzie, L., and Hecht, S.M. (1991) 9-Octadecynoic Acid—A Novel DNA-binding Agent,Chem. Res. Toxicol., 4, 195–198.

    PubMed  CAS  Article  Google Scholar 

  246. Ehrhart, G. (1936) Unsaturated Group in Therapeutic Substances. Medical und Chemical Abhandl,Medico-Chemical Forschungsstatten I. G. Farbenind, 3, 366–374.

    CAS  Google Scholar 

  247. Luesch, H., Yoshida, W.Y., Moore, R.E., and Paul, V.J. (2000) Apramides A-G, Novel Lipopeptides from the Marine CyanobacteriumLyngbya majuscula, J. Nat. Prod., 63, 1106–1112.

    PubMed  CAS  Article  Google Scholar 

  248. Williams, P.G., Yoshida, W.Y., Moore, R.E., and Paul, V.J. (2004) Micromide and Guamamide: Cytotoxic Alkaloids from a Species of the Marine CyanobacteriumSymploca, J. Nat. Prod. 67, 49–53.

    PubMed  CAS  Article  Google Scholar 

  249. Jimenez, J.I., and Scheuer, P.J. (2001) New Lipopeptides from the Caribbean CyanobacteriumLyngbya majuscula, J. Nat. Prod., 64, 200–203.

    PubMed  CAS  Article  Google Scholar 

  250. Hooper, G.J., Orjala, J., Schatzman, R.C., and Gerwick, W.H. (1998) Carmabins A and B, new Lipopeptides from the Caribbean CyanobacteriumLyngbya majuscula, J. Nat. Prod. 61, 529–533.

    PubMed  CAS  Article  Google Scholar 

  251. Horgen, F.D., Yoshida, W.Y., and Scheuer, P.J. (2000) Malevamides A-C, New Depsipeptides from the Marine CyanobacteriumSymploca laete-viridis, J. Nat. Prod., 63, 461–467.

    PubMed  CAS  Article  Google Scholar 

  252. Nogle, L.M., and Gerwick, W.H. (2002) Isolation of Four New Cyclic Depsipeptides, Antanapeptins A-D, and Dolastatin 16 from a Madagascan Collection ofLyngbya majuscula, J. Nat. Prod., 65, 21–24.

    PubMed  CAS  Article  Google Scholar 

  253. Luesch, H., Pangilinan, R.Y., Moore, R.E., and Paul, V.J. (2001) Pitipeptolides A and B New Cyclodepsipeptides from the Marine CyanobacteriumLyngbya majuscula, J. Nat. Prod., 64, 304–307.

    PubMed  CAS  Article  Google Scholar 

  254. Sitachitta, N., Williamson, R.T., and Gerwick, W.H. (2000) Yanucamides A and B, Two New Depsipeptides from an, Assemblage of the Marine CyanobacteriaLyngbya majuscula andSchizothrix Species,J. Nat. Prod., 63, 197–200.

    PubMed  CAS  Article  Google Scholar 

  255. Williams, P.G., Yoshida, W.Y., Quon, M.K., Moore, R.E., and Paul, V.J. (2003) Ulongapeptin, a Cytotoxic Cyclic Depsipeptide from a Palauan Marine CyanobacteriumLyngbya sp.,J. Nat. Prod., 66, 651–654.

    PubMed  CAS  Article  Google Scholar 

  256. Han, B., Goeger, D., Maier, C.S., and Gerwick, W.H. (2005) The Wewakpeptins, Cyclic Depsipeptides from a Papua New Guinea Collection of the Marine CyanobacteriumLymbya semiplena, J. Org. Chem., 70, 3133–3139.

    PubMed  CAS  Article  Google Scholar 

  257. Tan, L.T., Sitachitta, N., and Gerwick, W.H. (2003) The Guineamides, Novel Cyclic Depsipeptides from a Papua New Guinea Collection of the Marine CyanobacteriumLyngbya majuscula, J. Nat. Prod., 66, 764–771.

    PubMed  CAS  Google Scholar 

  258. Wan, F., and Erickson, K.L. (2001) Georgamide, a New Cyclic Depsipeptide with an Alkynoic Acid Residue from an Australian Cyanobacterium,J. Nat. Prod., 64, 143–146.

    PubMed  CAS  Article  Google Scholar 

  259. Paul, V.J., and Fenical, W. (1980) Toxic Acetylene-containing Lipids from the Red Marine AlgaLiagora farinosa Lamouroux,Tetrahedron Lett., 21, 3327–3330.

    CAS  Article  Google Scholar 

  260. Nugteren, D.H., and Christ-Hazelhof, E. (1987) Naturally Occurring Conjugated Octadecatrienoic Acids Are Strong Inhibitors of Prostaglandin Biosynthesis,Prostaglandins, 33, 403–417.

    PubMed  CAS  Article  Google Scholar 

  261. Soliman, F.M., Fathy, M.M., and Moussa, M.Y. (2000) Phytochemical and Biological Investigation of the Green Alga:Caulerpa prolifera Lamx.,Bull. Fac. Pharm. (Cairo Univ.), 38, 99–107.

    CAS  Google Scholar 

  262. Barbier, P., Guise, S., Huitorel, P., Amade, P., Pesando, D., Briand, C., and Peyrot, V. (2001) Caulerpenyne fromCaulerpa taxifolia Has an Antiproliferative Activity on Tumor Cell Line SK-N-SH and Modifies the Microtubule Network,Life Sci., 70, 415–429.

    PubMed  CAS  Article  Google Scholar 

  263. Fischel, J.L., Lemee, R., Formento, P., Caldani, C., Moll, J.L., Pesando, D., Meinesz, A., Grelier, P., and Pietra, F. (1995) Cell-growth-inhibitory Effects of Caulerpenyne, a Sesquiterpenoid from the Marine AlgaCaulerpa taxifolia, Anticancer Res., 15, 2155–2160.

    PubMed  CAS  Google Scholar 

  264. Valls, R., Lemee, R., Piovetti, L., Amade, P., and Bouaicha, N. (1995) Determination of Caulerpenyne, a Toxin of the Green AlgaCaulerpa taxifolia, Acta Bot. Gallica, 142, 131–135.

    CAS  Google Scholar 

  265. Lemee, R., Pesando, D., Durand-Clement, M., Dubreuil, A., Meinesz, A., Guerriero, A., and Pietra, F. (1993) Preliminary Survery of Toxicity of the Green AlgaCaulerpa taxifolia Introduced into the Mediterranean,J. Appl. Phycol., 5, 485–493.

    CAS  Article  Google Scholar 

  266. Jung, V., Thibaut, T., Meinesz, A., and Pohnert, G. (2002) Comparison of the Wound-activated Transformation of Caulerpenyne by Invasive and NoninvasiveCaulerpa Species of the Mediterranean,J. Chem. Ecol., 28, 2091–2105.

    PubMed  CAS  Article  Google Scholar 

  267. Guerriero, A., Marchetti, F., D'Ambrosio, M., Senesi, S., Dini, F., and Pietra, F. (1993) New Ecotoxicologically and Biogenetically Relevant Terpenes of the Tropical Green SeaweedCaulerpa taxifolia Which Is Invading the Mediterranean,Helv. Chim. Acta., 76, 855–864.

    CAS  Article  Google Scholar 

  268. De Napoli, L., Fattorusso, E., Magno, S., and Mayol, L. (1981) Furocaulerpin, a New Acetylenic Sesquiterpenoid from the Green AlgaCaulerpa prolifera, Experientia, 37, 1132.

    Article  Google Scholar 

  269. Maoka, T., Tsushima, M., and Nishino, H. (2002) Isolation and Characterization of Dinochrome A and B, Anti-carcinogenic Active Carotenoids from the Fresh Water Red TidePeridinium bipes, Chem. Pharm. Bull., 50, 1630–1633.

    PubMed  CAS  Article  Google Scholar 

  270. Tsushima, M., Maoka, T., Katsuyama, M., Kozuka, M., Matsuno, T., Tokuda, H., Nishino, H., and Iwashima, A. (1995) Inhibitory Effect of Natural Carotenoids on Epstein-Barr Virus Activation Activity of a Tumor Promoter in Raji Cells. A Screening Study for Antitumor Promoters,Biol. Pharm. Bull. 18, 227–233.

    PubMed  CAS  Google Scholar 

  271. Wu, J.T., Kuo-Huang, L.L., and Lee, J. (1998) Algicidal Effect ofPeridinium bipes onMicrocystis aeruginosa, Curr. Microbiol. 37, 257–261.

    PubMed  CAS  Article  Google Scholar 

  272. Oono, M., Kikuchi, K., Oonishi, S., Nishino, H., and Tsushima, Y. (1995) Anticancer Agents Containing Carotenoids, Japan Kokai Tokkyo Koho, 5pp., Japanese Patent: JP 07101872 A2 19950418 Heisei. Application: JP93-248267 19931004.

  273. Fiksdahl, A., and Liaaen-Jensen, S. (1988) Algal Carotenoids. Part 38. Diacetylenic Caroteneoids fromEuglena viridis, Phytochemistry 27, 1447–1450.

    CAS  Article  Google Scholar 

  274. Heelis, D.V., Kernick, W., Phillips, G.O., and Davies, K. (1979) Separation and Identification of the Carotenoid Pigments of Stigmata Isolated from Light-grown Cells ofEuglena gracilis Strain Z,Archiv Mikrobiol, 121, 207–211.

    CAS  Google Scholar 

  275. Nitsche, H. (1973) Heteroxanthin inEuglena gracilis, Archiv Mikrobiol. 90, 151–155.

    CAS  Article  Google Scholar 

  276. Strain, H.H., Aitzetmüller, K., Svec, W.A., and Katz, J.J. (1970) Structure of Heteroxanthine, a Unique Xanthophyll from the Xanthophyceae (Heterokontae).J. Chem. Soc., Chem. Commun., 14, 876–877.

    Google Scholar 

  277. Strain, H.H., Benton, F.L., Grandolfo, M.C., Aitzetmueller, K., Svec, W.A., and Katz, J.J. (1970) Heteroxanthine, Diatoxanthine, and Diadinoxanthine fromTribonema aequale, Phytochemistry 9, 2561–2565.

    CAS  Article  Google Scholar 

  278. Fiksdahl, A., Withers, N., Guillard, R.R.L., and Liaaen-Jensen, S. (1984) Algal Carotenoids. Part 31. Carotenoids of the Raphidophyceae—A Chemo-systematic Contribution,Comp. Biochem. Physiol. 78B, 265–271.

    CAS  Google Scholar 

  279. Buchel, C., Wilhelm, C., and Lenartz-Weiler, I. (1988) The Molecular Analysis of the Light Adaptation Reactions in the Yellow-green AlgaPleurochloris meiringensis (Xanthophyceae),Bot. Acta 101, 306–310.

    CAS  Google Scholar 

  280. Simmons, T.L., Andrianasolo, E., McPhail, K., Flatt, P., and Gerwick, W.H. (2005) Marine Natural Products as Anticancer Drugs,Mol. Cancer Therapy 4, 333–342.

    CAS  Google Scholar 

  281. Mayer, AM, and Gustafson, K.R. (2004) Marine Pharmacology in 2001–2: Antitumour and Cytotoxic Compounds,Eur. J. Cancer 40, 2676–2704.

    PubMed  CAS  Article  Google Scholar 

  282. Mayer, A.M., and Gustafson, K.R. (2003) Marine Pharmacology in 2000: Antitumor and Cytotoxic Compounds,Int. J. Cancer 105, 291–299.

    PubMed  CAS  Article  Google Scholar 

  283. Kim, J., and Park, E.J. (2002) Cytotoxic Anticancer Candidates from Natural Resources,Curr. Med. Chem. Anticancer Agents 2, 485–537.

    PubMed  CAS  Article  Google Scholar 

  284. Cragg, G.M., and Newman, D.J. (1999) Discovery and Development of Antineoplastic Agents from Natural Sources,Cancer Invest.17, 53–163.

    Article  Google Scholar 

  285. Fusetani, N. (2004) Search for Drug Leads from Japanese Marine Invertebrates,Yuki Gosei Kagaku Kyokaishi 62, 1073–1079.

    CAS  Google Scholar 

  286. Dembitsky, V.M. (2004) Astonishing Diversity of Natural Surfactants. 1. Glycosides of Fatty Acids and Alcohols,Lipids 39, 933–953.

    PubMed  CAS  Article  Google Scholar 

  287. Belarbiel, H., Contreras, G.A., Chisti, Y., Garcia, C.F., and Molina, G.E. (2003) Producing Drugs from Marine Sponges,Biotechnol. Adv. 21, 585–598.

    Article  CAS  Google Scholar 

  288. Youssef, D.T.A., Yoshida, W.Y., Kelly, M., and Scheuer, P.J. (2000) Polyacetylenes from a Red Sea SpongeCallyspongia Species,J. Nat. Prod. 63, 1406–1410.

    PubMed  CAS  Article  Google Scholar 

  289. Hallock, Y.F., Cardellina, J.H., 2nd, Balaschak, M.S., Alexander, M.R., Prather, T.R., Shoemaker, R.H., and Boyd, M.R. (1995) Antitumor Activity and Stereochemistry of Acetylenic Alcohols from the SpongeCribrochalina vasculum, J. Nat. Prod.58, 1801–1807.

    PubMed  CAS  Article  Google Scholar 

  290. Gunasekera, S.P., Faircloth, G.T., Wright, A.E., Thompson, W.C., and Burres, N. (1991) Immunosuppressant and Antitumor Acetylenic Alcohols fromCribrochalina vasculum, 6 pp., U.S. Patent 5073572.

  291. Gunasekera, S.P., and Faircloth, G.T. (1990) New Acetylenic Alcohols from the SpongeCribrochalina vasculum, J. Org. Chem. 55, 6223–6225.

    CAS  Article  Google Scholar 

  292. Zhou, G.-X., and Molinski, T. (2003) Long-chain Acetylenic Ketones from the Micronesian SpongeHaliclona sp. Importance of the 1-Yn-3-ol Group for Antitumor Activity,Mar. Drugs 1, 46–53.

    CAS  Google Scholar 

  293. Rashid, M., Gustafson, K.R., and Boyd, M.R. (2000) Pellynol I, a New Cytotoxic Polyacetylene from the SpongePellina sp.,Nat. Prod. Lett. 14, 387–392.

    CAS  Google Scholar 

  294. Fu, X., Abbas, S.A., Schmitz, F.J., Vidavsky, I., Gross, M.L., Laney, M., Schatzman, R.C., and Cabuslay, R.D. (1997) New Acetylenic Metabolites from the Marine SpongePellina triangulata, Tetrahedron 53, 799–814.

    CAS  Article  Google Scholar 

  295. Watanabe, K., Tsuda, Y., Yamane, Y., Takahashi, K., Iguchi, K., Naoki, H., and Fujita, T. (2000) Structures and Enantiomeric Ratios of Strongylodiols A-G, New Diynediols from the Okinawan Marine SpongeStrongylophora sp.Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 42, 367–372.

    CAS  Google Scholar 

  296. Watanabe, K., Tsuda, Y., Hamada, M., Omori, M., Mori, G., Iguchi, K., Naoki, H., Fujita, T, and Van Soest, R.W.M. (2005) Acetylenic Strongylodiols from aPetrosia (Strongylophora) Ok-inawan Marine Sponge,J. Nat. Prod. 68, 1001–1005.

    PubMed  CAS  Article  Google Scholar 

  297. Kim, J.S., Lim, Y.J., Im, K.S., Jung, J.H., Shim, C.J., Lee, C.O., Hong, J., and Lee, H. (1999) Cytotoxic Polyacetylenes from the Marine SpongePetrosia sp.,J. Nat. Prod. 62, 554–559.

    PubMed  CAS  Article  Google Scholar 

  298. Kim, J.S., Im, K.S., Jung, J.H., Kim, Y.-L., Kim, J., Shim, C.J., and Lee, C.-O. (1998) New Bioactive Polyacetylenes from the Marine SpongePetrosia sp.,Tetrahedron 54, 3151–3158.

    CAS  Article  Google Scholar 

  299. Kim, D.-K., Lee, M.-Y., Lee, H.S., Lee, D.S., Lee, J.-R., Lee, B.-J., and Jung, J.H. (2002) Polyacetylenes from a Marine SpongePetrosia sp. Inhibit DNA Replication at the Level of Initiation,Cancer Lett. (Shannon, Irel.) 185, 95–101.

    CAS  Article  Google Scholar 

  300. Choi, H.J., Bae, S.-J., Kim, N.D., Jung, J.H., and Choi, Y.H. (2004) Induction of Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the SpongePetrosia sp., in Human Skin Melanoma Cells,Int. J. Mol. Med. 14, 1091–1096.

    PubMed  CAS  Google Scholar 

  301. Aoki, S., Matsui, K., Murakami, N., Nakajima, T., and Kobayashi, M. (2001) Neuronal Differentiation Inducing Activity and Synthetic Study of Lembehyne A, a Novel Polyacetylene, Isolated from a Marine Sponge ofHaliclona sp.Tennen Yuki Kagoabutsu Toronkai Koen Yoshishu 43, 305–310.

    Google Scholar 

  302. Aoki, S., Matsui, K., Tanaka, K., Satari, R. and Kobayashi, M. (2000) Lembehyne A, a Novel Neuritogenic Polyacetylene, from a Marine Sponge ofHaliclona sp.,Tetrahedron 56, 9945–9948.

    CAS  Article  Google Scholar 

  303. Aoki, S., Matsui, K., Takata, T., Hong, W., and Kobayashi, M. (2001) Lembehyne A, a Spongean Polyacetylene, Induces Neuronal Differentiation in Neuroblastoma Cell,Biochem. Biophys. Res. Commun. 289, 558–563.

    PubMed  CAS  Article  Google Scholar 

  304. Aoki, S., Matsui, K., Takata, T., and Kobayashi, M. (2003)In situ Photoaffinity Labeling of the Target Protein for Lembehyne A, a Neuronal Differentiation Inducer,FEBS Lett. 544, 233–227.

    Article  CAS  Google Scholar 

  305. Ortega, M.J., Zubia, E., Carballo, J.L., and Salva, J (1996) Fulvinol, a New Long-Chain Diacetylenic Metabolite from the SpongeReniera fulva, J. Nat. Prod. 59, 1069–1071.

    CAS  Article  Google Scholar 

  306. Kobayashi, M., Mahmud, T., Tajima, H., Wang, W., Aoki, S., Nakagawa, S., Mayumi, T., and Kitagawa, I. (1996) Marine Natural Products, XXXVI. Biologically Active Polyacetylenes, Adiociacetylenes A, B, C, and D, from an Okinawan Marine Sponge ofAdocia sp.,Chem. Pharm. Bull. 44, 720–724.

    PubMed  CAS  Google Scholar 

  307. Isaacs, S., Kashman, Y., Loya, S., Hizi, A., and Loya, Y. (1993) Petrosynol and Petrosolic Acid, Two Novel Natural Inhibitors of the Reverse Transcriptase of Human Immunodeficiency Virus fromPetrosia sp.,Tetrahedron 49, 10435–10438.

    CAS  Article  Google Scholar 

  308. Fusetani, N., Shiragaki, T., Matsunaga, S., and Hashimoto, K. (1987) Bioactive Marine Metabolites. 20. Petrosynol and Petrosynone, Antimicrobial C30 Polyacetylenes from the Marine SpongePetrosia sp.: Determination of the Absolute Configuration,Tetrahedron Lett. 28, 4313–4314.

    CAS  Article  Google Scholar 

  309. Shen, Y.-C., and Prakash, C.V.S. (2000) Two New Acetylenic Derivatives and a New Meroditerpenoid from a Taiwanese Marine SpongeStrongylophora durissima, J. Nat. Prod. 63, 1686–1688.

    PubMed  CAS  Article  Google Scholar 

  310. Wright, A.E., McConnell, O.J., Kohmoto, S., Lui, M.S., Thompson, W., and Snader, K.M. (1987) Duryne, a New Cytotoxic Agent from the Marine SpongeCribrochalina dura, Tetrahedron Lett. 28, 1377–1380.

    CAS  Article  Google Scholar 

  311. Wright, A.E., Thompson, W.C., and Lui, M.S. (1987) Novel Polyacetylene Compositions Extracted from the Marine Sponge,Cribrochalina dura, and Their Use as Antitumor Agents, PCT International Application, 24pp., WO 8704703 A1 19870813.

  312. Dai, J.-R., Hallock, Y.F., Cardellina, J.H., II, and Boyd, M.R. (1996) Vasculyne, a New Cytotoxic Acetylenic Alcohol from the Marine SpongeCribrochalina vasculum, J. Nat. Prod. 59, 88–89.

    PubMed  CAS  Article  Google Scholar 

  313. Shin, J., Seo, Y., Cho, K.W., Rho, J.-R., and Paul, V.J. (1998) Osirisynes A-F, Highly Oxygenated Polyacetylenes from the SpongeHaliclona osiris, Tetrahedron 54, 8711–8720.

    CAS  Article  Google Scholar 

  314. Shin, J., Seo, Y., Cho, K.W., Rho, J.-R., and Paul, V.J. (1998) Osirisynes A-F, Highly Oxygenated Polyacetylenes from the SpongeHaliclona osiris, Tetrahedrson 54, 14636–14643.

    CAS  Article  Google Scholar 

  315. Ishiyama, H., Ishibashi, M., and Kobayashi, J. (1996) Taurospongin A, Novel Acetylene Derivative from Okinawan Marine SpongeHippospongia sp.,Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 38 469–474.

    Google Scholar 

  316. Youssef, D.T.A., Van Soest, R.W.M., and Fusetani, N. (2003) Callyspongamide A, a New Cytotoxic Polyacetylenic Amide from the Red Sea SpongeCallyspongia fistularis, J. Nat. Prod. 66, 861–862.

    PubMed  CAS  Article  Google Scholar 

  317. Youssef, D.T.A., Van Soest, R.W.M., and Fusetani, N. (2003) Callyspongenols A-C, New Cytotoxic C22-Polyacetylenic Alcohols from a Red Sea Sponge,Callyspongia Species,J. Nat. Prod. 66, 679–681.

    PubMed  CAS  Article  Google Scholar 

  318. Rotem, M., and Kashman, Y. (1979) New Polyacetylenes from the SpongeSiphonochalina sp.,Tetrahedron Lett. 20, 3193–3196.

    Article  Google Scholar 

  319. Lee, H.-S., Rho, J.-R., Sim, C.J., and Shin, J. (2003) New Acetylenic Acids from a Sponge of the GenusStelletta, J. Nat. Prod. 66, 566–568.

    PubMed  CAS  Article  Google Scholar 

  320. Schmitz, F.J., and Gopichand, Y. (1978) (7E, 13ξ, 15Z)-14,16-Dibromo-7,13,15-hexadecatrien-5-ynoic Acid. A Novel Dibromo Acetylenic Acid from the Marine SpongeXestospongia muta, Tetrahedron Lett. 39, 3637–3640.

    Article  Google Scholar 

  321. Ichiba, T., Scheuer, P.J., and Kelly-Borges, M. (1993) Sponge-derived Polyunsaturated C16 Di- and Tribromo-carboxylic Acids,Helv. Chim. Acta 76, 2814–2816.

    CAS  Article  Google Scholar 

  322. Shin, J., Seo, Y., and Cho, K.W. (1998) Five New Polyacetylenes from a Sponge of the GenusPetrosia, J. Nat. Prod. 61, 1268–1273.

    PubMed  CAS  Article  Google Scholar 

  323. Seo, Y., Cho, K.W., Lee, H.S., Rho, J.R., and Shin, J. (1999) New Acetylenic Enol Ethers of Glycerol from the SpongePetrosia sp.,J. Nat. Prod. 62, 122–126.

    PubMed  CAS  Article  Google Scholar 

  324. Rogers, E.W., and Molinski, T.F. (2005) A Cytotoxic Carotenoid from the Marine SpongePrianos osiros, J. Nat. Prod. 68, 450–452.

    PubMed  CAS  Article  Google Scholar 

  325. Kitamura, A., Tanaka, J., and Higa, T. (1996) New Cytotoxic Carotenoids from the SpongePhakellia stelliderma, J. Nat. Toxins 5, 219–224.

    CAS  Google Scholar 

  326. Zampella, A., D'Auria, M.V., Minale, L., Debitus, C., and Roussakis, C. (1996) Callipeltoside A: A Cytotoxic Aminodeoxy Lithistida SpongeCallipelta sp.,J. Am. Chem. Soc. 118, 11085–11088.

    CAS  Article  Google Scholar 

  327. Zampella, A., D'Auria, M.V., Minale, L., and Debitus, C. (1997) Callipeltosides B and C, Two Novel Cytotoxic Glycoside Macrolides from a Marine Lithistida SpongeCallipelta sp.,Tetrahedron 53, 3243–3248.

    CAS  Article  Google Scholar 

  328. Grassia, A., Bruno, I., Debitus, C., Marzocco, S., Pinto A., Gomez-Paloma, L., and Riccio, R. (2001) Spongidepsin, a New Cytotoxic Macrolide fromSpongia sp.,Tetrahedron 57, 6257–6260.

    CAS  Article  Google Scholar 

  329. Gallimore, W.A., Kelly, M., and Scheuer, P.J. (2001) Gelliusterols A-D, New Acetylenic Sterols from a Sponge,Gellius Species,J. Nat. Prod. 64, 741–744.

    PubMed  CAS  Article  Google Scholar 

  330. Steiner, E., Djerassi, C., Fattorusso, E., Magno, S., Mayol, L., Santacroce, C., and Sica, D. (1977) Isolation Structure Determination and Synthesis of New Acetylenic Steroids from the SpongeCalyx nicaaensis, Helv. Chim. Acta 60, 475–481.

    CAS  Article  Google Scholar 

  331. Onken, D., and Heublein, D. (1970) Acetylenated Steroids,Pharmazie 25, 3–9.

    PubMed  CAS  Google Scholar 

  332. Doss, G.A., and Djerassi, C. (1988) Sterols in Marine Invertebrates. 60. Isolation and Structure Elucidation of Four New Steroidal Cyclopropenes from the SpongeCalyx podatypa, J. Am. Chem. Soc. 110, 8124–8128

    CAS  Article  Google Scholar 

  333. Beress, L. (1982) Biologically Active Compounds from Coelenterates.Pure Appl. Chem. 54, 1981–1994.

    CAS  Google Scholar 

  334. Davies-Coleman, M.T., and Beukes, D.R. (2004) Ten Years of Marine Natural Products Research at Rhodes University,South African J. Sci. 100, 539–544.

    CAS  Google Scholar 

  335. Venkateswarlu, Y., Reddy, N.S., and Venkatesham, U. (2001) Novel Bioactive Compounds from the Soft Corals Chemistry and Biomedical Applications,Rec. Adv. Marine Biotechnol. 6, 101–129.

    CAS  Google Scholar 

  336. Ji, Y.-B., Wang, Y., and Lin, W.-H. (2004) Study on Chemical Constituents and Biological Activities of Soft Coral,Harbin Shangye Daxue Xuebao, Ziran Kexueban 20, 261–265.

    CAS  Google Scholar 

  337. Anjaneyulu, A.S.R., and Rao, G.V. (1997) Chemical Constituents of the Soft Coral Species ofSarcophyton Genus: A Review,J. Indian Chem. Soc. 74, 272–278.

    CAS  Google Scholar 

  338. Anjaneyulu, A.S.R., and Rao, G.V. (1995) The Chemical Constituents of the Soft Coral Species ofSinularia Genus: A Review.J. Sci. Industr. Res. 54, 637–649.

    CAS  Google Scholar 

  339. Fusetani, N., Toyoda, T., Asai, N., Matsunaga, S., and Maruyama, T. (1996) Montiporic Acids A and B, Cytotoxic and Antimicrobial Polyacetylene Carboxylic Acids from Eggs of the Scleractinian CoralMontipora digitata, J. Nat. Prod. 59, 796–797.

    PubMed  CAS  Article  Google Scholar 

  340. Alam, N., Bae, B.H., Hong, J., Lee, C.O., Im, K.S., and Jung, J.H. (2001) Cytotoxic Diacetylenes from the Stony CoralMontipora Species,J. Nat. Prod. 64, 1059–1063.

    PubMed  CAS  Article  Google Scholar 

  341. Bae, B.H., Im, K.S., Choi, W.C., Hong, J., Lee, C.-O., Choi, J.S., Son, B.W., Song, J.-I., and Jung, J.H. (2000) New Acetylenic Compounds from the Stony CoralMontipora sp.,J. Nat. Prod. 63, 1511–1514.

    PubMed  CAS  Article  Google Scholar 

  342. Higa, T., Tanaka, J., Kohagura, T., and Wauke, T. (1990) Bioactive Polyacetylenes from Stony Corals.Chem. Lett. 1, 145–148.

    Article  Google Scholar 

  343. Purchon, R.D. (1998)The Biology of Mollusca, Pergamon Press, London.

    Google Scholar 

  344. Barnes, R.S.K., Calow, P., and Olive, P.J.W. (1993)The Invertebrates: A New Synthesis, Blackwell, London.

    Google Scholar 

  345. Faulkner, D.J. (2002) Marine Natural Products,Nat. Prod. Rep. 19, 1–48.

    PubMed  CAS  Google Scholar 

  346. Hungerford, J.M. (2005) Committee on Natural Toxins and Food Allergens Marine and Freshwater Toxins,J. AOAC Int. 88, 299–313.

    PubMed  CAS  Google Scholar 

  347. Cimino, G., Crispino, A., Di Marzo, V., Gavagnin, M., and Ros, J.D. (1990) Oxytoxins, Bioactive Molecules Produced by the Marine Opisthobranch MolluskOxynoe olivacea from a Diet-derived Precursor,Experientia 46, 767–770.

    PubMed  CAS  Article  Google Scholar 

  348. Targett, N.M., and McConnell, O.J. (1982) Detection of Secondary Metabolites in Marine Macroalgae Using the Marsh Peri-winkle,Littorina irrorata Say, as an Indicator Organism,J. Chem. Ecol. 8, 115–124.

    CAS  Article  Google Scholar 

  349. Fujiwara, Y., Maoka, T., Ookubo, M., and Matsuno, T. (1992) Crassostreaxanthins A and B, Novel Marine Carotenoids from the OysterCrassostrea gigas, Tetrahedron Lett. 33, 4941–4944.

    CAS  Article  Google Scholar 

  350. Maoka, T. (1997) A New Apocarotenoid from the Marine Shell-fishMytilus coruscus, J. Nat. Prod. 60, 616–617.

    CAS  Article  Google Scholar 

  351. Maoka, T., Fujiwara, Y., Hashimoto, K., and Akimoto, N. (2005) Carotenoids in Three Species of Corbicula Clams,Corbicula japonica, Corbicula sandai, andCorbicula sp. (Chinese fresh-water corbicula clam),J. Agric. Food Chem. 53, 8357–8364.

    PubMed  CAS  Article  Google Scholar 

  352. Ha, B.-S., Baek, S.-H., and Kim, S.-Y. (2000) Carotenoids Components of Tunicata, Shellfishes and Its Inhibitory Effects on Mutagenicity and Growth of Tumor Cell,Han' guk Sikp'um Yongyang Kwahak Hoechi 29, 922–934.

    CAS  Google Scholar 

  353. Partali, V., Tangen, K., and Liaaen-Jensen, S. (1989) Carotenoids in Food Chain Studies. III. Resorption and Metabolic Transformation of Carotenoids inMytillus edulis (edible mussel),Comp. Biochem. Physiol. 92B, 239–246.

    CAS  Google Scholar 

  354. Hertzberg, S., Partali, V., and Liaaen-Jensen, S. (1988) Animal Carotenoids. 32. Carotenoids ofMytilus edulis (edible mussel),Acta Chem. Scand. 42B, 495–503.

    Google Scholar 

  355. Nishino, H., Satomi, Y., Tokuda, H., Hishino, A., Iwashima, A., Tanaka, Y., Yamano, Y., Shibata, Y., Torihara, M., Tamai, Y., and Ito, M. (1991) Anti-tumor activity of Peridinin and Its Structurally Related Butenolide Compounds,J. Kyoto Prefect. Univ. Med. 100, 831–835.

    CAS  Google Scholar 

  356. Nishino, H. (1998) Cancer Prevention by Carotenoids,Mutation Res. 402, 159–163.

    PubMed  CAS  Google Scholar 

  357. Matsuno, T., Maoka, T., and Hiraoka, K. (1981) A New Acetylenic Carotenoid from Sea Mussels,Nippon Suisan Gakkaishi 47, 143–144.

    CAS  Google Scholar 

  358. Campbell, S.A., Mallams, A.K., Waight, E.S., Weedon, B.C.L., Barbier, M., Lederer, E., and Salaque, A. (1967) Pectenoxanthin, Cynthiaxanthin and a New Acetylenic Carotenoid, Pectinolone,Chem. Commun., 941–942.

  359. Matsuno, T., Hiraoka, K., and Maoka, T. (1981) Carotenoid in the Gonad of Scallop,Nippon Suisan Gaku 47, 383–390.

    Google Scholar 

  360. Maoka, T., and Matsuno, M. (1988) Isolation and Structural Elucidation of Three New Acetylenic Carotenoids from the Japanese Sea MusselMytilus coruscus, Nippon Suisan Gaku 54, 1443–1447.

    CAS  Google Scholar 

  361. Fujiwara, Y., Maoka, T., Ookubo, M., and Matuno, T. (1992) Crassostreaxanthin A and B, Novel Marine Carotenoids from the OysterCrassostrea gigas, Tetrahedron Lett. 33, 4941–4944.

    CAS  Article  Google Scholar 

  362. Tsushima, M., Maoka, T., and Matuno, T. (2001) Structures of Carotenoids with 5,6-Dihydro-β-End Groups from the Spindle ShellFusinus perplexus, J. Nat. Prod. 64, 1139–1142.

    PubMed  CAS  Article  Google Scholar 

  363. Vershinin, A. (1996) Carotenoids in Mollusca: Approaching the Functions,Comp. Biochem. Physiol. 113B, 63–71.

    CAS  Google Scholar 

  364. Maoka, T., Fujiwara, Y., Hashimoto, K., and Akimoto, N. (2005) Structure of New Carotenoids from Corbicula ClamCorbicula japonica.J. Nat. Prod. 68, 1341–1344.

    PubMed  CAS  Article  Google Scholar 

  365. Ballard, C.E., Yu, H., and Wang, B. (2002) Recent Developments in Depsipeptide Research,Curr. Med. Chem. 9, 471–498.

    PubMed  CAS  Google Scholar 

  366. Rodríguez, J., Fernáandez, R., Quiñoá, E., Riguera, R., Debitus, C., and Bouchet, P. (1994) Onchidin: A Cytotoxic Depsipeptide with C2 Symmetry from a Marine Mollusc,Tetrahedron Lett. 35, 9239–9242.

    Article  Google Scholar 

  367. Fernandez, R., Rodriguez, J., Quiñoa, E., Riguera, R., Muñoz, L., Fernandez-Suarez, M., and Debitus, C. (1996) Onchidin B. A New Cyclodepsipeptide from the Marine MolluscOnchidium sp.,J. Am. Chem. Soc. 118, 11635–11643.

    CAS  Article  Google Scholar 

  368. Reese, M.T., Gulavita, N.K., Nakao, Y., Hamann, M.T., Yoshida, W.Y., Coval, S.J., and Scheuer, P.J. (1996) Kulolide: A Cytotoxic Depsipeptide from a Cephalaspidean Mollusk,Philinossis speciosa, J. Am. Chem. Soc. 118, 11081–11084.

    CAS  Article  Google Scholar 

  369. Nakao, Y., Yoshida, W.Y., Szabo, C.M., Baker, B.J., and Scheuer, P.J. (1998) More Peptides and Other Diverse Constituents of the Marine MolluskPhilinopsis speciosa, J. Org. Chem. 63, 3272–3280.

    CAS  Article  Google Scholar 

  370. Pettit, G.R., Xu, J.-P., Hogan, F., and Cerny, R.L. (1998) Antineoplastic Agents. 369. Isolation and Structure of Dolastatin 17,Heterocycles 47, 491–496.

    CAS  Article  Google Scholar 

  371. Pettit, G.R., and Xu, J.P. (1998) Isolation and Structural Elucidation of the Cytostatic Linear and Cyclo-depsipeptides Dolastatin 16, Dolastatin 17, and Dolastatin 18, PCT Int. Appl. 57 pp., WO 9836765 A1 19980827, Application: WO 98-US3455 19980223.

  372. Kelly, M.S. (2005) Echinoderms: Their Culture and Bioactive Compounds,Prog. Mol. Subcell. Biol. 39, 139–165.

    PubMed  CAS  Google Scholar 

  373. Miyamoto, T. (2005) Pharmaceutical and Bioactive Materials from Echinoderms,Kaiyo Seibutsu Seibun no Riyo, 145–158.

  374. Smiley, S. (1990) A Review of Echinoderm Oogenesis,J. Electron Microsc. Tech. 16, 93–114.

    PubMed  CAS  Article  Google Scholar 

  375. Yokota, Y. (2005) Bioresources from Echinoderms.Prog. Mol. Subcell. Biol. 39, 251–266.

    PubMed  CAS  Google Scholar 

  376. Parisi, G., and Pierantoni, R. (1977) Carotenoids inCryptomonas Species. I.Boll. Soc. Ital. Biol. Sperimentale 53, 575–581.

    CAS  Google Scholar 

  377. Czeczuga, B. (1984) Investigations of Carotenoids, in Some Animals of the Adriatic Sea—VI. Representatives of Sponges, Annelids, Mollusks and Echinodermates,Comp. Biochem. Physiol. 78B, 259–264.

    CAS  Google Scholar 

  378. Gross, J., Carmon, M., Lifshitz, A., and Sklarz, B. (1975) Carotenoids of the Invertebrates of the Red Sea (Eilat shore). Carotenoids of the CrinoidLamprometra klunzingeri (Echinodermata),Comp. Biochem. Physiol. 52B, 459–564.

    Google Scholar 

  379. Czeczuga, B. (1977) Investigations of Carotenoids in Some Animals of the Adriatic Sea. V. Echinodermata,Hydrobiologia 54, 177–180.

    CAS  Article  Google Scholar 

  380. Tsushima, M., Byrne, M., Amemiya, S., and Matsuno, T. (1995) Comparative Biochemical Studies of Carotenoids in Sea Urchins—III. Relationship Between Developmental Mode and Carotenoids in the Australian EchinoidsHeliocidaris erythrograma andH. tuberculata and a Comparison with Japanese Species,Comp. Biochem. Physiol. 110B, 719–723.

    CAS  Google Scholar 

  381. Tsushima, M., Kawakami, T., and Matsuno, T. (1993) Metabolism of Carotenoids in Sea-urchinPseudocentrotus depressus, Comp. Biochem. Physiol. 106B, 737–741.

    CAS  Google Scholar 

  382. Tsushima, M., and Matsuno, T. (1990) Comparative Biochemical Studies of Carotenoids in Sea-urchins—I,Comp. Biochem. Physiol., 96B, 801–810.

    CAS  Google Scholar 

  383. Tsushima, M., Amemiya, S., and Matsuno, T. (1993) Comparative Biochemical Studies of Carotenoids in Sea-urchins—I. The More Primitive Sea-Urchins Belonging to the Orders Cidaroida, Echinothurioida, Diadematoida and Arabacioida,Comp. Biochem. Physiol., 106B, 729–735.

    CAS  Google Scholar 

  384. Francis, G.W., Upadhyay, R.R., and Liaaen-Jensen, S. (1970) Animal Carotenoids. 4. Carotenoids ofAsterias rubens, Asterinic Acid, Acta Chem. Scand. 24, 3050–3052.

    CAS  Google Scholar 

  385. Bernhard, K., Englert, G., Meister, W., Vecchi, M., Renstroem, B., and Liaaen-Jensen, S. (1982) Carotenoids of the Carotenoprotein Asteriarubin. Optical Purity of Asterinic Acid,Helv. Chem. Acta 65, 2224–2229.

    CAS  Article  Google Scholar 

  386. Shone, C.C., Britton, G., and Goodwin, T.W. (1978) The Violet Carotenoprotein of the Starfish,Aterias rubens, Comp. Biochem. Physiol. 62B, 507–513.

    Google Scholar 

  387. Tanaka, Y. (1978) Comparative Biochemical Studies on Carotenoids in Aquatic Animals,Kagoshima Daigaku Suisangakubu Kiyo 27, 355–422.

    CAS  Google Scholar 

  388. Tanaka, Y., and Katayama, T. (1976) Biochemical Studies on Carotenoids in Echinodermata. The Structure of an Astaxanthin-like Pigment (7,8-didehydroastaxanthin) and the Carotenoids in Starfish,Nippon Suisan Gakkaishi 42, 807–812.

    CAS  Google Scholar 

  389. De Nicola, M.G. (1959) Composition of New Keto Carotenoids Related to the Metabolism of Astaxanthin in Starfish,Boll. Sedute Accad. Gioenia Sci. Nat. Catania 5, 201–214.

    Google Scholar 

  390. Fontaine, A.R. (1962) Pigments inOphiocomina nigra. III. Carotenoid Pigments,J. Mar. Biol. Assoc. UK 42, 33–47.

    CAS  Article  Google Scholar 

  391. Maoka, T., Tsushima, M., and Matsuno, T. (1989) New Acetylenic Carotenoids from the StarfishesAsterina pectinifera andAsterias amurensis, Comp. Biochem. Physiol. 93B, 829–834.

    CAS  Google Scholar 

  392. Matsuno, T., and Tsushima, M. (1995) Comparative Biochemical Studies of Carotenoids in Sea Cucumbers,Comp. Biochem. Physiol. 111B, 597–605.

    CAS  Google Scholar 

  393. Euler, H., and Hellstrom, H. (1934) Asteric Acid, a Carotenoid Acid from Starfish,Hoppe-Seyler's Z. Physiol. Chem. 223, 89–97.

    Google Scholar 

  394. Goodwin, T.W. (1969) Pigments in Echinodermata,Chem. Zool. 3, 135–147.

    CAS  Google Scholar 

  395. Vevers, H.G. (1966) Pigmentation,Physiol. Echinoderm 4, 267–275.

    Google Scholar 

  396. Kobayashi, J., and Ishibashi, M. (2000) Bioactive Secondary Metabolites from Okinawan Sponges and Tunicates,Stud. Nat. Prod. Chem. 23D, 185–231.

    Article  Google Scholar 

  397. Fujita, M., Nakao, Y., Matsunaga, S., van Soest, R.W., Itoh, Y., Seiki, M., and Fusetani, N. (2003) Callysponginol Sulfate A, an MT1-MMP Inhibitor Isolated from the Marine SpongeCallyspongia truncata, J. Nat. Prod. 66, 569–571.

    PubMed  CAS  Article  Google Scholar 

  398. Fujita, M., Nakao, Y., Matsunaga, S., Nishikawa, T., and Fusetani, N. (2002) Sodium 1-(12-hydroxy)octadecanyl sulfate an MMP2 Inhibitor, Isolated from a Tunicate of the Family Polyclinidae,J. Nat. Prod. 65, 1936–1938.

    PubMed  CAS  Article  Google Scholar 

  399. Gavagnin, M., Castelluccio, F., Antonelli, A., Templado, J, and Cimino, G. (2004) Unusual C21 Linear Polyacetylenic Alcohols from an Atlantic Ascidian,Lipids 39, 681–685.

    PubMed  CAS  Article  Google Scholar 

  400. Matsuno, T., Ookubo, M., Nishizawa, T., and Shimizu, I. (1984) Carotenoids of Sea Squirts. I. New Marine Carotenoids, Halocynthiaxanthin and Mytiloxanthinone fromHalocynthia roretzi, Chem. Pharm. Bull. 32, 4309–4315.

    CAS  Google Scholar 

  401. Choi, B.-D., Kang, S.-J., Choi, Y.-J., Youm, M.-G., and Lee, K.-H. (1994) Utilization of Ascidian (Halocynthia roretzi) Tunic. 3. Carotenoid Compositions of Ascidian Tunic,Han's guk Susan Hakhoechi 27, 344–350.

    CAS  Google Scholar 

  402. Matsuno, T., and Nishino, H. (1992) Anticancer Agents Containing Halocythiaxanthin, Japan Kokai Tokkyo Koho, 5 pp., Japanese Patent: JP 04120019 A2 19920421 Heisei.

  403. Nishino, H., Tsushima, M., Matsuno, T., Tanaka, Y., Okuzumi, J., Murakoshi, M., Satomi, Y., Takayasu, J., and Tokuda, H. (1992) Anti-neoplastic Effect of Halocynthiaxanthin, a Metabolite of Fucoxanthin,Anti-Cancer Drugs 3, 493–497.

    PubMed  CAS  Article  Google Scholar 

  404. McDonald, L.A., Capson, T.L., Krishnamurthy, G., Ding, W.-D., Ellestad, G.A., Bernan, V.S., Maiese, W.M., Lassota, P., and Discafani, C. (1996) Namenamicin, a New Enediyne Antitumor Antibiotic from the Marine AscidianPolysyncraton lithostrotum, J. Am. Chem. Soc. 118, 10898–10899.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

About this article

Cite this article

Dembitsky, V.M. Anticancer activity of natural and synthetic acetylenic lipids. Lipids 41, 883–924 (2006). https://doi.org/10.1007/s11745-006-5044-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5044-3

Keywords

  • Sponge
  • Carotenoid
  • Panax Ginseng
  • Marine Sponge
  • Polyacetylenes