Skip to main content
Log in

Intrasample variability of intramyocellular triacylglycerol

  • Published:
Lipids

Abstract

Intrasample variability of intramyocellular triacylglycerol (imcTG)in the skeletal muscle of rats has been examined. Aliquoting after homogenization of muscle samples reduced imcTG variability considerably compared with aliquoting before homogenization. The results suggested that skeletal muscle samples be homogenized before aliquoting in order to reduce imcTG variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAH:

aliquoting after homogenization

ABH:

aliquoting before homogenization

imcTG:

intramyocellular triacylglycerol

IV:

intrasample variability

PV:

processing variability

References

  1. Zierler, K.L. (1976) Fatty Acids as Substrates for Heart and Skeletal Muscle. Circ. Res. 38, 459–463.

    PubMed  CAS  Google Scholar 

  2. Watt, M.J., Heigenhauser, G.J., and Spriet, L.L. (2002) Intramuscular Triacylglycerol Utilization in Human Skeletal Muscle During Exercise: Is There a Controversy? J. Appl. Physiol. 93, 1185–1195.

    PubMed  CAS  Google Scholar 

  3. Frayn, K., and Maycock, P.R. (1980) Skeletal Muscle Triacylglycerol in the Rat: Methods for Sampling and Measurement and Studies of Biological Variability, J. Lipid Res. 21, 139–144.

    PubMed  CAS  Google Scholar 

  4. Wendling, P.S., Peters, S.J., Heigenhauser, G.J., and Spriet, L.L. (1996) Variability of Triacylglycerol Content in Human Skeletal Muscle Biopsy Samples, J. Appl. Physiol. 81, 1150–1155.

    PubMed  CAS  Google Scholar 

  5. Essen-Gustavsson, B., and Tesch, P.A. (1990) Glycogen and Triglyceride Utilization in Relation to Muscle Metabolic Characteristics in Men Performing Heavy-Resistance Exercise (in Body Builders), Eur. J., Appl. Physiol. Occup. Physiol. 61, 5–10.

    Article  CAS  Google Scholar 

  6. Guo, Z. (2001) Triglyceride Content in Skeletal Muscle: Variability and the Source. Analytical Biochem. 296, 1–8.

    Article  CAS  Google Scholar 

  7. Guo, ZK. (2004) Muscle Fat Utilization During Exercise: Controversial Only Methodologically, J. Appl. Physiol. 96, 1569–1570.

    Article  PubMed  Google Scholar 

  8. Guo, ZK., and Zhou, L. (2003) Dual Tail Catheters for Infusion and Sampling in Rats as an Efficient Platform for Metabolic Experiments, Lab. Anim. (NY) 32, 45–48.

    Article  Google Scholar 

  9. Guo, ZK., Mishra, P., and Macura, S. (2001) Sampling the Intramyocellular Triglycerides from Skeletal Muscle, J. Lipid Res. 42, 1041–1048.

    PubMed  CAS  Google Scholar 

  10. Folch, J., Lees, M., and Sloane-Standley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem., 226, 497–509.

    PubMed  CAS  Google Scholar 

  11. Humphreys, S.M., Fisher, R.M., and Frayn, K.N. (1990) Micromethod for Measurements of Subnanomole Amounts of Triacylglycerol, Ann. Clin. Biochem. 27, 597–598.

    PubMed  CAS  Google Scholar 

  12. Baldwin, K.M., Reitman, J.S., Terjung, R.L., Winder, W.W., and Holloszy, J.O. (1973) Substrate Depletion in Different Types of Muscle and in Liver During Prolonged Running, Am. J. Physiol. 225, 1045–1050.

    PubMed  CAS  Google Scholar 

  13. Reitman, J., Baldwin, K.M., and Holloszy, J.O. (1973) Intramuscular Triglyceride Utilization by Red, White, and Intermediate Skeletal Muscle and Heart During Exhausting Exercise, Proc. Soc. Exp. Biol. Med. 142, 628–631.

    PubMed  CAS  Google Scholar 

  14. Fröberg, S.O. (1971) Effect of Acute Exercise on Tissue Lipids in Rats, Metabolism 20, 714–720.

    Article  PubMed  Google Scholar 

  15. Spriet, L.L., Heigenhauser, G.J., and Jones, N.L. (1986) Endogenous Triacylglycerol Utilization by Rat Skeletal Muscle During Tetanic Stimulation, J. Appl. Physiol. 60, 410–415.

    PubMed  CAS  Google Scholar 

  16. Hurley, B.F., Nemeth, P.M., Martin III, W.H., Hagberg, J.M., Dalsky, G.P., and Holloszy, J.O. (1986) Muscle Triglyceride Utilization During Exercise: Effect of Training. J. Appl. Physiol. 60, 562–567

    PubMed  CAS  Google Scholar 

  17. Bergman, B.C., Butterfield, G.E., Wolfel, E.E., Casazza, G.A., Lopaschuk, G.D., and Brooks, G.A. (1999) Evaluation of Exercise and Training on Muscle Lipid Metabolism, Am. J. Physiol. 276, E106-E117.

    PubMed  CAS  Google Scholar 

  18. Neter, J., Wasserman, W., and Kutner, M.D. (1985) Applied Linear Statistical Models: Regression, Analysis of Variance and Experimental Designs, 2nd edn., Richard D. Irwin, Inc., Homewood, IL.

    Google Scholar 

  19. De Feyter, H.M., Schaart, G., Hesselink, M.K., Schrauwen, P., Nicolay, K., and Prompers, J.J. (2006) Regional Variations in Intramyocellular Lipid Concentration Correlate with Muscle Fiber Type Distribution in Rat Tibialis Anterior Muscle, Magn. Reson. Med. 56, 19–25.

    Article  PubMed  CAS  Google Scholar 

  20. He, J., Watkins, S., and Kelley, D.E. (2001) Skeletal Muscle Lipid Content and Oxidative Enzyme Activity in Relation to Muscle Fiber Type in Type 2 Diabetes and Obesity, Diabetes 50, 817–823.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZengKui Guo.

About this article

Cite this article

Zhou, L., Guo, Z. Intrasample variability of intramyocellular triacylglycerol. Lipids 41, 759–761 (2006). https://doi.org/10.1007/s11745-006-5028-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5028-3

Keywords

Navigation