Skip to main content
Log in

Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development

  • Articles
  • Published:
Lipids

Abstract

We evaluated the effects of dietary lipid class (phospholipid vs. neutral lipid) and level of n−3 long-chain PUFA (LC-PUFA) on the growth, digestive enzymatic activity, and histological organization of the intestine and liver in European sea bass larvae. Fish were fed from the onset of exogenous feeding at 7 to 37 d post-hatch with five isoproteic and isolipidic compound diets with different levels of EPA and DHA. Diet names indicated the percentage of EPA and DHA contained in the phospholipids (PL) and neutral lipids (NL), as follows: PL5, PL3, PL1, NL1, and NL3. Histological observations showed different patterns of lipid absorption and accumulation in the intestinal mucosa depending on the level and nature of the dietary lipid fraction. Fish fed high levels of neutral lipids (11%, NL3 diet: 2.6% of EPA+DHA in the NL fraction) showed large intracellular and intercellular lipid deposits in the anterior intestine, but no such lipid accumulation was detected when larvae were fed with low and moderate levels of EPA and DHA in the phospholipid and neutral lipid fractions of the diet (PL and NL1 diets). PL were preferentially absorbed in the postvalvular intestine, and the accumulation of marine PL was inversely correlated to their dietary level. The postvalvular intestinal mucosa and liver showed signs of steatosis; large lipid vacuoles were observed in this region of the intestine and in the liver and were inversely correlated with the level of dietary neutral lipids. The best results in terms of growth, survival, and development (maturation of the digestive system and histological organization of the liver and intestinal mucosa) were obtained in the group fed with 2.3% of EPA and DHA in the PL fraction of the diet (PL3 diet), revealing that European sea bass larvae use the LC-PUFa contained in the PL fraction more efficiently than those from the NL fraction of the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCK:

cholecystokinin

dph:

days post-hatch

IFREMER:

L'Institut Francais de Recherche pour l'Exploitation de la Mer

INRA:

Institut National de la Recherche Agronomique

IS:

intestinal segment

microdiet:

microparticulated diet (particle size 200–400 μm

NL:

neutral lipids

PL:

phospholipids(s)

PS:

pancreatic segment

References

  1. Sargent, J.R., McEvoy, L., Estévez, A., Bell, M., Bell, M., Henderson, J., and Tocher, D. (1999) Lipid Nutrition in Marine Fish During Early Development: Current Status and Future Directions, Aquaculture 79, 217–230.

    Article  Google Scholar 

  2. Sargent, J.R., Tocher, D.R., and Bell, J.B. (2002) The Lipids, in Fish Nutrition, 3rd edn. (Halver, J.E., and Hardy, R.W., eds.), pp. 182–257, Academic Press, San Diego.

    Google Scholar 

  3. Bell, J.G., McEvoy, L.A., Estévez, A., Shields, R.J., and Sargent, J.R. (2003) Optimizing Lipid Nutrition in First-Feeding Flatfish Larvae, Aquaculture 227, 211–220.

    Article  CAS  Google Scholar 

  4. Kanazawa, A. (1993) Essential Phospholipids of Fish and Crustaceans, in Fish Nutrition in Practice, Les Colloques, No. 61 (Kaushik, S.J., and Luquet, P., eds.), pp. 519–530, INRA, Paris.

    Google Scholar 

  5. Geurden, I., Charlon, N., Marion, D., and Bergot, P. (1997) Influence of Purified Soybean Phospholipids on Early Development of Carp (Cyprinus carpio L), Aquacult. Int. 5, 137–149.

    Google Scholar 

  6. Izquierdo, M.S., Socorro, J., Arantzamendi, L., and Hernández-Cruz, C.M. (2000) Recent Advances in Nutrition in Fish Larvae, Fish Physiol. Biochem. 22, 97–107.

    Article  CAS  Google Scholar 

  7. Cahu, C.L., Zambonino Infante, J.L., and Barbosa, V. (2003) Effect of Dietary Phospholipid Level and Phospholipid: Neutral Lipid Value on the Development of Sea Bass (Dicentrarchus labrax) Larvae Fed a Compound Diet, Br. J. Nutr. 90, 21–28.

    Article  PubMed  CAS  Google Scholar 

  8. Coutteau, P., Geurden, I., Camara, M.R., Bergot, P., and Sorgeloos, P. (1997) Review of the Dietary Effects of Phospholipids in Fish and Crustacean Larviculture, Aquaculture 155, 14–164.

    Article  Google Scholar 

  9. Kanazawa, A. (2003) Nutrition of Marine Fish Larvae, J. Appl. Aquacult. 13, 103–143.

    Article  Google Scholar 

  10. Salhi, M., Izquierdo, M.S., Hernández-Cruz, C.M., Bessonart, M., and Fernández-Palacios, H. (1999) Effect of Different Dietary Polar Lipid Levels and Different n−3 HUFA Content in Polar Lipids on the Gut and Liver Histological Structure of Seabream (Sparus aurata) Larvae, Aquaculture 179, 253–264.

    Article  CAS  Google Scholar 

  11. Koven, W.M., Kolkowski, S., Tandler, A., Kissil, G.W., and Sklan, D. (1993) The Effect of Dietary Lecithin and Lipase, as a Function of Age, on n−9 Fatty Acid Incorporation in the Tissue Lipids of Sparus aurata Larvae, Fish Physiol. Biochem. 10, 357–364.

    Article  CAS  Google Scholar 

  12. Tso, P. (1994) Intestinal Lipid Absorption, in Physiology of the Gastrointestinal Tract (Johnson, L.R., ed.), pp. 1867–1907. Raven Press, New York.

    Google Scholar 

  13. Fontagné, S., Geurden, I., Escaffre, A.M., and Bergot, P. (1998) Histological Changes Induced by Dietary Phospholipids in Intestine and Liver of Common Carp (Cyprinus carpio L.) Larvae, Aquaculture 161, 213–223.

    Article  Google Scholar 

  14. Olsen, R.E., Myklebust, R., Kaino, T., and Ringo, E. (1999) Lipid Digestibility and Ultrastructural Changes in the Enterocytes of Arctic Char (Salvelinus alpinus L.) Fed Linseed Oil and Soybean Lecithin, Fish Physiol. Biochem. 21, 35–44.

    Article  CAS  Google Scholar 

  15. Olsen, R.E., Myklebust, R., Ringø, E., and Mayhew, T.M. (2000) The Influences of Dietary Linseed Oil and Saturated Fatty Acids on Caecal Enterocytes in Artic Char (Salvelinus alpinus L.): A Quantitative Ultrastructural Study, Fish Physiol. Biochem. 22, 207–216.

    Article  CAS  Google Scholar 

  16. Deplano, M., Connes, R., Diaz, J.P., and Barnabé, G. (1991) Variation in the Absorption of Macromolecular Proteins in Larvae of the Sea Bass Dicentrarchus labrax During Transition to Exotrophic Phase, Mar. Biol. 110, 29–36.

    Article  CAS  Google Scholar 

  17. Segner, H., Rösch, R., Verreth, J., and Witt, U. (1993) Larval Nutritional Physiology: Studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus, J. World Aquacult. Soc. 24, 121–134.

    Google Scholar 

  18. Karasov, W.H., and Hume, I.D. (1997) Vertebrate Gastrointestinal System, in Handbook of Physiology, Section 13: Comparative Physiology (Dantzler, W.H. (ed.), Vol. 1, pp. 409–480, Oxford University Press, New York.

    Google Scholar 

  19. Segner, H., and Juario, J.V. (1986) Histological Observations on the Rearing of Milkfish, Chanos chanos, Fry Using Different Diets, J. Appl. Ichthyol. 4, 162–173.

    Google Scholar 

  20. Deplano, M., Connes, R., Diaz, J.P., and Paris, J. (1989) Intestinal Steatosis in the Farm-Reared Sea-Bass, Dicentrarchus labrax, Dis. Aquat. Org. 6, 121–130.

    Google Scholar 

  21. Caballero, M.J., López-Calero, G., Socorro, J., Roo, F.J., Izquierdo, M.S., and Fernández, A.J. (1999) Combined Effect of Lipid Level and Fish Meal Quality on Liver Histology of Gilt-head Seabream (Sparus aurata), Aquaculture 179, 277–290.

    Article  CAS  Google Scholar 

  22. Caballero, M.J., Izquierdo, M.S., Kjorsvik, E., Montero, D., Socorro, J., Fernández, A.J., and Roselund, G. (2003) Morphological Aspects of Intestinal Cells from Gilthead Seabream (Sparus aurata) Fed Diets Containing Different Lipid Sources, Aquaculture 225, 325–340.

    Article  CAS  Google Scholar 

  23. Dabrowski, K., and Guderley, H. (2002) Intermediary Metabolism, in Fish Nutrition, 3rd edn., (Halver, J.E., and Hardy, R.W., eds.), pp. 310–367, Academic Press, San Diego.

    Google Scholar 

  24. Hoehne-Reitan, K., and Kjorsvik, E. (2004) Functional Development of the Liver and Exocrine Pancreas, Am. Fish. Soc. 40, 9–36.

    Google Scholar 

  25. Storch, V., Stählin, W., and Juario, J.V. (1983) Effect of Different Diets on the Ultrastructure of Hepatocytes of Chanos chanos Fry (Chanidae: Teleostei): An Electron Microscopic and Morphometric Analysis, Mar. Biol. 74, 101–104.

    Article  Google Scholar 

  26. National Research Council (1993) Nutrient Requirements of Fish, National Academy of Sciences, Washington, DC.

    Google Scholar 

  27. Zambonino-Infante, J.L., Cahu, C.L., and Péres, A. (1997) Partial Substitution of Di- and Tripeptides for Native Protein in Sea Bass Diet Improves Dicentrarchus labrax Larval Development, J. Nutr. 127, 604–614.

    Google Scholar 

  28. Metais, P., and Bieth, J. (1968) Détermination de l'α-amilase par une microtecnique (Determination of the α-Amylase by a Microtechnique), Ann. Biol. Clin. (Paris) 26, 133–142.

    CAS  Google Scholar 

  29. Holm, H., Hanssen, L.E., Krogdahl, A., and Florholmen, J. (1988) High and Low Inhibitor Soybean Meals Affect Human Duodenal Proteinase Activity Differently: In vivo Comparison with Bovine Serum Albumin, J. Nutr. 118, 515–520.

    PubMed  CAS  Google Scholar 

  30. Iijima, N., Tanaka, S., and Ota, Y. (1998) Purification and Characterization of Bile-Salt Activated Lipase from the Hepatopancreas of Red Sea Bream, Pagrus major, Fish Physiol. Biochem. 18, 59–69.

    Article  CAS  Google Scholar 

  31. Crane, R.K., Boge, G., and Rigal, A. (1979) Isolation of Brush Border Membranes in Vesicular Form from the Intestinal Spiral Valve of the Small Dogfish (Scyliorhinus canicula), Biochim. Biophys. Acta 554, 264–267.

    Article  PubMed  CAS  Google Scholar 

  32. Bessey, O.A., Lowry, O.H., and Brock, M.J. (1946) A Method for the Rapid Determination of Alkaline Phosphatase with Five Cubic Millimeters of Serum, J. Biol. Chem. 164, 321–329.

    CAS  Google Scholar 

  33. Nicholson, J.A., and Kim, Y.S. (1975) A One-Step l-Amino Acid Oxidase Assay for Intestinal Peptide Hydrolase Activity, Anal. Biochem. 63, 110–117.

    Article  CAS  Google Scholar 

  34. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  35. Péres, A., Zambonino-Infante, J.L., and Cahu, C.L. (1998) Dietary Regulation of Activities and mRNA Levels of Trypsin and Amylase in Sea Bass (Dicentrarchus labrax) Larvae, Fish Physiol. Biochem. 19, 145–152.

    Article  Google Scholar 

  36. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  37. Juaneda, P., and Rocquelin, G. (1985) Rapid and Convenient Separation of Phospholipids and Non Phosphorus Lipids from Rat Heart Using Silica Cartridges, Lipids 20, 40–41.

    PubMed  CAS  Google Scholar 

  38. Dagnelie, P. (1975) Les méthodes de l'inférence statistique, in Théorie et méthodes statistiques (Ducolot, J., ed.), Vol. 2, pp. 1–463, Les Presses Agronomiques de Gembloux, Gembloux, Belgium.

    Google Scholar 

  39. Sargent, J.R., McEvoy, L.A., and Bell, J.G. (1997) Requirements, Presentation and Sources of Polyunsaturated Fatty Acids in Marine Larval Fish, Aquaculture 155, 117–127.

    Article  CAS  Google Scholar 

  40. Rainuzzo, J.R., Farestveit, R., and Jorgensen, L. (1993) Fatty Acid and Aminoacid Composition During Embryonic and Larval Development in Plaice (Pleuronectes platessa), in Physiological and Biochemical Aspects of Fish Development (Walther, B.T., and Fhyn, H.J., eds.), pp. 290–295, Bergen University, Bergen, Norway.

    Google Scholar 

  41. Brinkmeyer, R., and Holt, G.J. (1998) Highly Unsaturated Fatty Acids in Diets for Red Drum (Scianops ocellatus) Larvae, Aquaculture 161, 253–268.

    Article  CAS  Google Scholar 

  42. Rodriguez, C., Perez, J.A., Badia, P., Izquierdo, M.S., Fernández-Palacios, H., and Hernández, A.L. (1998) The n−3 Highly Unsaturated Fatty Acids Requirements of Gilthead Sea Bream (Sparus aurata L.) Larvae When Using an Appropriate Ratio in the Diet, Aquaculture 169, 9–23.

    Article  CAS  Google Scholar 

  43. Zambonino Infante, J.L., and Cahu, C.L. (1999) High Dietary Lipids Levels Enhance Digestive Tract Maturation and Improve Dicentrarchus labrax Larval Development, J. Nutr. 129, 1195–1200.

    PubMed  CAS  Google Scholar 

  44. Shintani, T., Takahashi, N., Fushiki, T., Kotera, J., and Sugimoto, E. (1995) Recognition System for Dietary Fatty Acids in the Rat Small Intestine, Biosci. Biotech. Biochem. 59, 1428–1432.

    Article  CAS  Google Scholar 

  45. Sheele, G.A. (1993) Regulation of Pancreatic Gene Expression in Response to Hormones and Nutritional Substrates, in The Pancreas: Biology, Pathobiology, and Disease (Go, V.L.W., Gardner, J.D., Brooks, F.P., Lebenthal, E.P., Di Magno, E.P., and Sheele, G.A., eds.), pp. 103–120, Raven Press, New York.

    Google Scholar 

  46. Diaz, J.P., Guyot, E., Vigier, S., and Connes, R. (1997) First Events in Lipid Absorption During Post-Embryonic Development of the Anterior Intestine in Gilt-Head Sea Bream, J. Fish Biol. 51, 180–192.

    Article  PubMed  CAS  Google Scholar 

  47. Smith, L.S. (1989) Digestive Functions in Teleost Fishes, in Fish Nutrition (Harver, J.E., ed.), 2nd edn., pp. 331–421, Academic Press, San Diego.

    Google Scholar 

  48. García-Hernández, M.P., Lozano, M.T., Elbal, M.T., and Agulleiro, B. (2001) Development of the Digestive Tract of Sea Bass (Dicentrarchus labrax L.). Light and Electron Microscopic Studies, Anat. Embryol. 204, 39–57.

    Article  PubMed  Google Scholar 

  49. Caballero, M.J., Obach, A., Roselund, G., Montero, D., Gisvold, M., and Izquierdo, M.S. (2002) Impact of Different Dietary Lipid Sources on Growth, Lipid Digestibility, Tissue Fatty Acid Composition and Histology of Rainbow Trout, Oncorhynchus mykiss, Aquaculture 214, 253–271.

    Article  CAS  Google Scholar 

  50. Chatain, B., and Ounais-Guschemann, N. (1990) Improved Rate of Initial Swim Bladder Inflation in Intensively Reared Sparus auratus, Aquaculture 84, 345–353.

    Article  Google Scholar 

  51. Chatain, N. (1986) La vessie natatoire chez Dicentrarchus labrax et Sparus auratus. I. Aspects morphologiques du développement, Aquaculture 53, 303–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gisbert.

About this article

Cite this article

Gisbert, E., Villeneuve, L., Zambonino-Infante, J.L. et al. Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40, 609–618 (2005). https://doi.org/10.1007/s11745-005-1422-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1422-0

Keywords

Navigation