Skip to main content
Log in

Daphnia magna can tolerate short-term starvation without major changes in lipid metabolism

  • Articles
  • Published:
Lipids

Abstract

Daphnia magna is a common crustacean that is adapted to brief speels of fasting. Lipids are naturally a major component of their diet and are stored as energy reserves. However, there has been some controversy in the literature on the extent to which dietary lipids are used directly for complex lipid formation in Daphnia. We examined lipid metabolism in D. magna by labeling the animals using [1-14C]acetate and then followed the turnover of radiolabeled lipids during a pulse chase. Daphnia were either fed or maintained without food during the chase period. The decrease in radioactivity during the chase was relatively unaffected by feeding, although there were some differences in the distribution of radioactivity between lipid classes or individual FA. The polar lipids, which were four times better labeled than nonpolar lipids, contained the most radioactivity in the zwitterionic phosphoglycerides, PE and PC. Under the experimental conditions, the turnover of the polar membrane lipids was unaffected by feeding. Within nonpolar lipids, TAG accounted for up to about 80% of the label, followed by DAG. Overall, our data show that D. magna is capable of high rates of lipid radiolabeling de novo and, in addition, is able to use—and indeed may be dependent on—some dietary components such as the PUFA linoleate and α-linolenate. The results also clearly show that Daphnia is able to tolerate brief spells of fasting (24 h) with very little change to its lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMOX:

4,4-dimethyloxazoline

dpm:

disintegration per minute

PG:

phosphatidylglycerol

PL:

polar lipids

References

  1. Nakamura, M.T., and Nara, T.Y. (2003) Essential Fatty Acid Synthesis and Its Regulation in Mammals, Prostaglandins, Leukotr. Essent. Fatty Acids 68, 145–150.

    Article  CAS  Google Scholar 

  2. Lauritzen, L., and Hansen, H.S. (2003) Which of the n−3 FA Should Be Called Essential? Lipids 38, 889–891.

    PubMed  CAS  Google Scholar 

  3. Martin-Creuzburg, D., and Von Elert, E. (2004) Impact of 10 Dietary Sterols on Growth and Reproduction of Daphnia galeata, J. Chem. Ecol. 30, 483–500.

    Article  PubMed  CAS  Google Scholar 

  4. Teshima, S., Kanazava, W.A., and Koshio, S. (1993) Recent Developments in Nutrition and Microparticulate Diets of Larval Prawns, Isr. J. Aquacult.-Bamidgen 45, 175–184.

    Google Scholar 

  5. Teshima, S., and Kanazava, W.A. (1986) Nutritive Value of Sterols for the Juvenile Prawn, Bull. Jpn. Soc. Sci. Fish. 52, 1417–1422.

    CAS  Google Scholar 

  6. Kanazava, A. (2001) Sterols in Marine Invertebrates, Fish. Sci. 67, 997–1007.

    Article  Google Scholar 

  7. Ackman, R.G. (1999) Comparison of Lipids in Marine and Freshwater Organisms, in Lipids in Freshwater Ecosystems (Arts, M.T., and Wainman, B.C., eds.), pp. 262–298, Springer, New York.

    Google Scholar 

  8. Arts, M.T., Evans, M.S., and Robarts, R.D. (1992) Seasonal Patterns of Total and Energy Reserve Lipids of Dominant Zooplanktonic Crustaceans from a Hyper-eutrophic Lake, Oecologia 90, 560–571.

    Article  Google Scholar 

  9. Falk-Petersen, S., Sargent, J.R., Lonne, O.J., and Timofeev, S. (1999) Functional Biodiversity of Lipids in Antarctic Zooplankton: Calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias, Polar Biol. 21, 37–47.

    Article  Google Scholar 

  10. Olsen, Y. (1999) Lipids and Essential Fatty Acids in Aquatic Food Webs: What Can Freshwater Ecologists Learn from Mariculture? in Lipids in Freshwater Ecosystems (Arts, M.T., and Wainman, B.C., eds.), pp. 161–203, Springer, New York.

    Google Scholar 

  11. Hagen, W. (1999) Reproductive Strategies and Energetic Adaptations of Polar Zooplankton, Invertebr. Reprod. Dev. 36, 25–34.

    Google Scholar 

  12. Hagen, W., and Auel, H. (2001) Seasonal Adaptations and the Role of Lipids in Oceanic Zooplankton, Zool.-Anal. Complex Syst. 104, 313–326.

    CAS  Google Scholar 

  13. Arts, M.T. (1999) Lipids in Freshwater Zooplankton: Selected Ecological and Physiological Aspects, in Lipids in Freshwater Ecosystems (Arts, M.T., and Wainman, B.C., eds.), pp. 71–90, Springer, New York.

    Google Scholar 

  14. Goulden, C.E., Moeller, R.E., McNair, J.N., and Place, A.R. (1999) Lipid Dietary Dependencies in Zooplankton, in Lipids in Freshwater Ecosystems (Arts, M.T., and Wainman, B.C., eds.), pp. 91–109, Springer, New York.

    Google Scholar 

  15. Goulden, C.E., and Place, A.R. (1990) Fatty Acid Synthesis and Accumulation Rates in Daphniids, J. Exp. Zool. 256, 168–178.

    Article  CAS  Google Scholar 

  16. Goulden, C.E., and Place, A.R. (1993) Lipid Accumulation and Allocation in Daphniid Cladocera, Bull. Mar. Sci. 53, 106–114.

    Google Scholar 

  17. Farkas, T., Kariko, K., and Csengeri, I. (1981) Incorporation of [I-14C]Acetate into Fatty Acids of the Crustaceans Daphnia magna and Cyclops strenus in Relation to Temperature, Lipids 16, 418–422.

    CAS  Google Scholar 

  18. Arts, M.T., Robarts, R.D., and Evans, M.S. (1993) Energy Reserve Lipids of Zooplanktonic Crustaceans from an Oligotrophic Saline Lake in Relation to Food Resources and Temperature, Can. J. Fish. Aquat. Sci. 50, 2404–2420.

    Article  CAS  Google Scholar 

  19. Wainman, B.C., McQueen, D.J., and Lean, D.R.S. (1993) Seasonal Trends in Zooplankton Lipid Concentration and Class in Freshwater Lakes, J. Plankton Res. 15, 1319–1332.

    CAS  Google Scholar 

  20. Cauchie, H.M., Jasper-Versali, M.F., Hoffmann, L., and Thorne, J.P. (1999) Analysis of the Seasonal Variation in Biochemical Composition of Daphnia magna Straus (Crustacea: Branchiopoda: Anomopoda) from an Acrated Wastewater Stabilisation Pond, Ann. Limnol./Intl. J. Limnol. 35, 223–231.

    Google Scholar 

  21. Sargent, J.R., and Henderson, R.J. (1986) Lipids, in The Biological Chemistry of Marine Copepods (Corner, E.D.S., and O'Hara, S.C.M., eds.), pp. 59–108, Clarendon Press, Oxford.

    Google Scholar 

  22. Wakil, S.J., Stoops, J.K., and Joshi, V.C. (1983) Fatty Acid Synthesis and Its Regulation, Annu. Rev. Biochem. 52, 537–579.

    Article  PubMed  CAS  Google Scholar 

  23. Gurr, M.I., Harwood, J.L., and Frayn, K.N. (2002) Lipid Biochemistry, 5th edn., Blackwells, Oxford.

    Google Scholar 

  24. Knops, M., Altenburger, R., and Segner, H. (2001) Alterations of Physiological Energetics, Growth and Reproduction of Daphnia magna Under Toxicant Stress, Aquat. Toxicol. 53, 79–90.

    Article  PubMed  CAS  Google Scholar 

  25. Sakai, M. (2001) Chronic Toxicity Test with Daphnia magna for Examination of River Water Quality, Food Contam. Agric. Wastes 36, 67–74.

    Article  CAS  Google Scholar 

  26. Barata, C., Carlos-Navarro, J., Varo, I., Carmen Riva, M., Arun, S., and Porte, C. (2005) Changes in Antioxidant Enzyme Activities, Fatty Acid Composition and Lipid Peroxidation in Daphnia magna During the Aging Process, Compar. Biochem. Physiol. B: Biochem. Mol. Biol. 140B, 81–90.

    Article  CAS  Google Scholar 

  27. Ballantyne, A.P., Brett, M.T., and Schindler, D.E. (2003) The Importance of Dietary Phosphorus and Highly Unsaturated Fatty Acids for Sockeye (Oncorhynchus nerka) Growth in Lake Washington—A Bioenergetics Approach, Can. J. Fish. Aquat. Sci. 60, 12–22.

    Article  CAS  Google Scholar 

  28. Von Elert, E. (2004) Food Quality Constraints in Daphnia: Interspecific Differences in the Response to the Absence of a Long Chain Polyunsaturated Fatty Acid in the Food Source, Hydrobiologia 526, 187–196.

    Article  Google Scholar 

  29. Becker, C., Feuchtmayr, H., Brepohl, D., Santer, B., and Boersma, M. (2004) Differential Impacts of Copepods and Cladocerans on Lake Seston, and Resulting Effects on Zooplankton Growth, Hydrobiologia 526, 197–207.

    Article  CAS  Google Scholar 

  30. Park, S., Müller-Navarra, D., and Goldman, C.R. (2003) Seston Essential Fatty Acids and Carbon to Phosphorus Ratios as Predictors for Daphnia pulex Dynamics in a Large Reservoir, Lake Berryessa, Hydrobiologia 505, 171–178.

    Article  CAS  Google Scholar 

  31. Ravet, J.L., Brett, M.T., and Müller-Navarra, D.C. (2003) A Test of the Role of Polyunsaturated Fatty Acids in Phytoplankton Food Quality for Daphnia Using Liposome Supplementation, Limnol. Oceanogr. 48, 1938–1947.

    Article  CAS  Google Scholar 

  32. Von Elert, E. (2002) Determination of Limiting Polyunsaturated Fatty Acids in Daphnia galeata Using a New Method to Enrich Food Algae with Single Fatty Acids, Limnol. Oceanogr. 47, 1764–1773.

    Article  Google Scholar 

  33. Sundbom, M., and Vrede, T. (1997) Effects of Fatty Acid and Phosphorus Content of Food on the Growth, Survival and Reproduction of Daphnia, Freshwater Biol. 38, 665–674.

    Article  CAS  Google Scholar 

  34. Kainz, M., and Mazumder, A. (2005) Effects of Algal and Bacterial Diet on Methyl Mercury Concentrations in Zooplankton, Environ. Sci. Technol. 39, 1666–1672.

    Article  PubMed  CAS  Google Scholar 

  35. Wacker, A., and Von Elert, E. (2001) Polyunsaturated Fatty Acids: Evidence for Non-substitutable Biochemical Resources in Daphnia galeata, Ecology 82, 2507–2520.

    Article  Google Scholar 

  36. Ahmadjian, V. (1967) The Lichen Symbiosis, Blaisdell, Waltham, MA.

    Google Scholar 

  37. Kainz, M., Lucotte, M., and Parrish, C.C. (2002) Methyl Mercury in Zooplankton—The Role of Size, Habitat and Food Quality, Can. J. Fish. Aquat. Sci. 59, 1606–1615.

    Article  CAS  Google Scholar 

  38. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  39. Garbus, J., De Luca, H.F., Loomans, M.E., and Strong, F.M. (1963) The Rapid Incorporation of Phosphate into Mitochondrial Lipids, J. Biol. Chem. 238, 59–63.

    PubMed  CAS  Google Scholar 

  40. Kates, M. (1986) Techniques in Lipidology, 2nd edn., Elsevier, Amsterdam.

    Google Scholar 

  41. Elendt, B.P. (1989) Effects of Starvation on Growth, Reproduction, Survival and Biochemical Composition of Daphnia magna, Arch. Hydrobiol. 116, 415–433.

    CAS  Google Scholar 

  42. Vrede, T., Persson, J., and Aronsen, G. (2002) The Influence of Food Quality (P:C Ratio) and Somatic Growth Rate of Daphnia, Limnol. Oceanogr. 47, 487–494.

    Article  CAS  Google Scholar 

  43. Farkas, T., Nemecz, G.Y., and Csengeri, I. (1984) Differential Response of Lipid Metabolism and Membrane Physical State by an Actively and Passively Overwintering Planktonic Crustacean, Lipids 19, 436–442.

    CAS  Google Scholar 

  44. Bychek, E.A., and Gushchina, I.A. (1999) Age-Dependent Changes of Lipid Composition in Daphnia magna, Biochemistry-Moscow 64, 543–545.

    PubMed  CAS  Google Scholar 

  45. Cripps, C., Blomquist, G.J., and Renobales, D.M. (1986) De novo Biosynthesis of Linoleic Acid in Insects, Biochim. Biophys. Acta 876, 572–580.

    CAS  Google Scholar 

  46. Blomquist, G.J., Borgeson, C.E., and Vundla, M. (1991) Polyunsaturated Fatty Acids and Eicosanoids in Insects, Insect Biochem. 21, 99–106.

    Article  CAS  Google Scholar 

  47. Weinert, J., Blomquist, G.J., and Borgeson, C.E. (1993) De novo Biosynthesis of Linoleic Acid in 2 Non-insect Invertebrates—The Land Slug and the Garden Snail, Experientia 49, 919–921.

    Article  CAS  Google Scholar 

  48. Avery, S.V., Lloyd, D., and Harwood, J.L. (1994) Changes in Membrane Fatty Acid Composition and Δ-12-Desaturase Activity During Growth of Acanthamoeba castellanii in Batch Culture, J. Eukaryot. Microbiol. 41, 396–401.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Harwood.

About this article

Cite this article

Bychek, E.A., Dobson, G.A., Harwood, J.L. et al. Daphnia magna can tolerate short-term starvation without major changes in lipid metabolism. Lipids 40, 599–608 (2005). https://doi.org/10.1007/s11745-005-1421-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1421-1

Keywords

Navigation