Skip to main content
Log in

Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation

  • Articles
  • Published:
Lipids

Abstract

Oxidation of LDL contributes to endothelial dysfunction and atherosclerosis. This process could be associated with hyperhomocysteinemia, a condition that can be reduced after folic acid treatment. Because a reduction in LDL oxidation may improve endothelial function, we studied the effect of some vitamins (folic acid, 5-methyltetrahydrofolic acid, and vitamin B-12) on LDL oxidation, either in the presence or absence of homocysteine. For this purpose, two in vitro systems were used: an endothelial cell-catalyzed LDL oxidation system and a cell-free copper-initiated LDL oxidation system. The kinetics of coppercatalyzed LDL oxidation was determined by continuous monitoring of the production of conjugated dienes in the reaction medium. TBARS production, a parameter of lipid peroxidation, was also evaluated. In both in vitro systems, only 5-methyl-tetrahydrofolic acid was able to decrease TBARS production in a concentration-dependent manner, independently of the presence or absence of homocysteine. In the copper-induced LDL oxidation system, vitamin B-12 and 5-methyltetrahydrofolic acid increased the lag time of conjugated diene production by 25 and 47%, respectively, suggesting that both vitamins in this system had antioxidant properties. Folic acid was unable to show antioxidant properties when included in either in vitro system. The results demonstrate that 5-methyltetrahydrofolic acid and vitamin B-12 are important protective agents against LDL oxidative modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hcy:

homocysteine

HUVEC:

human umbilical vein endothelial cell

5-MTHF:

5-methyltetrahydrofolate

THF:

tetrahydrofolate

References

  1. Sparrow, C.P., and Olszewski, A. (1993) Cellular Oxidation of Low Density Lipoprotein Is Caused by Thiol Production in Media Containing Transition Metal Ions, J. Lipid Res. 3, 1219–1228.

    Google Scholar 

  2. Witztum, J.L., and Steinberg, D. (1991) Role of Oxidized Low Density Lipoprotein in Atherogenesis, J. Clin. Invest. 88, 1785–1792.

    PubMed  CAS  Google Scholar 

  3. Olszewski, A., and McCully, K. (1993) Homocysteine Metabolism and the Oxidative Modification of Protein and Lipids, Free Radical Biol. Med. 14, 683–693.

    Article  CAS  Google Scholar 

  4. Ventura, P., Panini, R., Verlato, C., Scarpetta, G., and Salvioli, G. (2000) Peroxidation Indices and Total Antioxidant Capacity in Plasma During Hyperhomocysteinemia Induced by Methionine, Metabolism 49, 225–228.

    Article  PubMed  CAS  Google Scholar 

  5. Jocelyn, P.C. (1972) Biochemistry of the SH Group: The Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and Disulphides, pp. 84–115, Academic Press, New York.

    Google Scholar 

  6. Hankey, G.J., and Eikelboom, J.W. (1999) Homocysteine and Vascular Disease, Lancet 35, 407–413.

    Article  Google Scholar 

  7. Bellamy, M.F., McDowell, I.F., Ramsey, M.W., Brownlee, M., Newcombe, R.G., and Lewis, M.J. (1999) Oral Folate Enhances Endothelial Function in Hyperhomocysteinaemic Subjects Eur. J. Clin. Invest. 29, 659–662.

    Article  PubMed  CAS  Google Scholar 

  8. Hirsch, S., Ronco, A.M., Vasquez, M., de la Maza, M.P., Garrido, A., Barrera, G., Gattas, V., Glasinovic, A., Leiva, L., and Bunout, D. (2004) Hyperhomocysteinemia in Healthy Young Men and Elderly Men with Normal Serum Folate Concentration Is Not Associated with Poor Vascular Reactivity or Oxidative Stress, J. Nutr. 134, 1832–1835.

    PubMed  CAS  Google Scholar 

  9. Verhaar, M.C., Wever, R.M., Kastelein, J.J., van Dam, T., Koomans, H.A., and Rabelink, T.J. (1998) 5-Methyltetrahydrofolate, the Active Form of Folic Acid, Restores Endothelial Function in Familial Hypercholesterolemia, Circulation 97, 237–241.

    PubMed  CAS  Google Scholar 

  10. Bennett-Richards, K., Kattenhorn, M., Donald, A., Oakley, G., Varghese, Z., Rees, L., and Deanfield, J.E. (2002) Does Oral Folic Acid Lower Total Homocysteine Levels and Improve Endothelial Function in Children with Chronic Renal Failure? Circulation 105, 1810–1815.

    Article  PubMed  CAS  Google Scholar 

  11. Stroes, E.S., van Faassen, E.E., Yo, M., Martasek, P., Boer, P., Govers, R., and Rabelink, T.J. (2000) Folic Acid Reverts Dysfunction of Endothelial Nitric Oxide Synthase, Circ. Res. 86, 1129–1134.

    PubMed  CAS  Google Scholar 

  12. Nakano, E., Higgins, J.A., and Powers, H.J. (2001) Folate Protects Against Oxidative Modification of Human LDL, Br. J. Nutr. 86, 637–639.

    PubMed  CAS  Google Scholar 

  13. Havel, R.J., Eder, H.A., and Bradgon, H.F. (1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  14. Terramani, T.T., Eton, D., Bui, P.A., Wang, Y., Weaver, F.A., and Yu, H. (2000) Human Macrovascular Endothelial Cells: Optimization of Culture Conditions, In Vitro Cell. Dev. Biol.-Animal 36, 125–132.

    Article  CAS  Google Scholar 

  15. Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M. (1989) Continuous Monitoring of in vitro Oxidation of Human Low Density Lipoprotein, Free Radical Res. Commun. 6, 67–75.

    CAS  Google Scholar 

  16. Lapenna, D., Ciofani, G., Pierdomenico, S.D., Giamberardino, M.A., and Cuccurullo, F. (2001) Reaction Conditions Affecting the Relationship Between Thiobarbituric Acid Reactivity and Lipid Peroxides in Human Plasma, Free Radical Biol. Med. 31, 331–335.

    Article  CAS  Google Scholar 

  17. Kelly, G. (1997) The Coenzyme Forms of Vitamin B12: Toward an Understanding of Their Therapeutic Potential, Altern. Med. Rev. 2, 459–471.

    Google Scholar 

  18. McCaddon, A., Regland, B., Hudson, P., and Davies, G. (2002) Functional Vitamin B12 Deficiency and Alzheimer Disease, Neurology 58, 1395–1399.

    PubMed  CAS  Google Scholar 

  19. Wirt, M.D., Sagi, I., and Chance, M.R. (1992) Formation of a Square Planar Co(I)B12 Intermediate. Implications for Enzyme Catalysis, Biophys. J. 63, 412–417.

    Article  PubMed  CAS  Google Scholar 

  20. Wirt, M.D., and Chance, M.R. (1993) Temperature Dependent Coordination Effects in Base-off Adenosyl and Methylcobalamin by X-ray Edge Spectroscopy, J. Inorg. Biochem. 49, 265–273.

    Article  PubMed  CAS  Google Scholar 

  21. Van Doorslaer, S., Jeschke, G., Epel, B., Goldfard, D., Eichel, R.A., Krautler, B., and Schweiger, A. (2003) Axial Solvent Coordination in “Base-off” Cob(II)alamin and Related Co(II)-corrinates Revealed by 2D-EPR, J. Am. Chem. Soc. 125, 5915–5927.

    Article  PubMed  CAS  Google Scholar 

  22. Chemaly, S.M., Jack, L.A., Yellowlees, L.J., Harper, P.L., Heeg, B., and Pratt, J.M. (2004) Vitamin B12 as an Allosteric Cofactor: Dual Fluorescence, Hysteresis, Oscillations and the Selection of Corrin over Porphyrin, Dalton Trans. 21, 2125–2134.

    Article  Google Scholar 

  23. Moreira, P.I., Siedlak, S.L., Aliev, G. Zhu, X., Cash, A.D., Smith, M.M., and Perry, G. (2004) Oxidative Stress Mechanisms and Potential Therapeutics in Alzheimer Disease, J. Neural Transm., DOI 10.1007/s00702-004-0242-8 (published on-line December 7, 2004).

  24. Pentieva, K., McNulty, H., Reichert, R., Ward, M., Strain, J.J., McKillop, D.J., McPartlin, J.M., Connolly, E., Molloy, A., Kramer, K., and Scott, J. (2004) The Short-Term Bioavailabilities [6S]-5-Methyltetrahydrofolate and Folic Acid Are Equivalent in Men, J. Nutr. 13, 580–585.

    Google Scholar 

  25. Rezk, B.M., Haenen, G., van der Vijgh, W.J.F., and Bast, A. (2003) Tetrahydrofolate and 5-Methyltetrahydrofolate Are Folates with High Antioxidant Activity. Identification of the Antioxidant Pharmacophore, FEBS Lett. 555, 601–605.

    Article  PubMed  CAS  Google Scholar 

  26. Heijnen, C.G., Haenen, G.R., Oostveen, R.M., Stalpers, E.M., and Bast, A. (2002) Protection of Flavonoids Against Lipid Peroxidation: The Structure-Activity Relationship Revisited, Free Radical Res. 36, 575–581.

    Article  CAS  Google Scholar 

  27. Verhaar, M.C., Wever, R., Kastelein, J., Loon, D., Milstien, S., Koomans, H.A., and Rabelink, T.J. (1999) Effects of Oral Folic Acid on Endothelial Function in Familial Hypercholesterolemia, Circulation 100, 335–338.

    PubMed  CAS  Google Scholar 

  28. Doshi, S.N., McDowell, I.F., Moat, S.J., Lang, D., Newcombe, R.G., Kredan, M.B., Lewis, M.J., and Goodfellow, J. (2001) Folate Improves Endothelial Function in Coronary Artery Disease: An Effect Mediated by Reduction of Intracellular Superoxide? Arterioscler. Thromb. Vasc. Biol. 21, 1196–1202.

    PubMed  CAS  Google Scholar 

  29. Halvorsen, B., Brude, I., Drevon, C.A., Nysom, J., Ose, L., Christiansen, E.N., and Nenseter, M.S. (1996) Effect of Homocysteine on Copper Ion-Catalyzed, Azo Compound-Initiated and Mononuclear Cell-Mediated Oxidative Modification of Low Density Lipoprotein, J. Lipid Res. 37, 1591–1600.

    PubMed  CAS  Google Scholar 

  30. Hirano, K.T., Ogihara, M.M., Yasuda, H., Tamai, N., Kawamura, N., and Mino, M. (1994) Homocysteine Induces Iron-Catalyzed Lipid Peroxidation of Low Density Lipoprotein That Is Prevented by α-Tocopherol, Free Radical Res. 21, 267–276.

    CAS  Google Scholar 

  31. Demuth, K., Atger, V., Borderie, D., Benoit, M.O., Sauvaget, D., Lotersztajn, S., and Moatti, N. (1999) Homocysteine Decreases Endothelin-1 Production by Cultured Human Endothelial Cells, Eur. J. Biochem. 263, 367–376.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, X., Li, H., Jin, H., Ebin, Z., Brodsky, S., and Goligorsky, M.S. (2000) Effects of Homocysteine on Endothelial Nitric Oxide Production, Am. J. Physiol Renal Physiol. 279, F671-F678.

    PubMed  CAS  Google Scholar 

  33. Wang, J., Dudman, N.P., and Wilcken, D.E. (1993) Effects of Homocysteine and Related Compounds on Prostacyclin Production by Cultured Human Vascular Endothelial Cells, Thromb. Haemostasis 70, 1047–1052.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Ronco.

About this article

Cite this article

Ronco, A.M., Garrido, A., Llanos, M.N. et al. Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation. Lipids 40, 259–264 (2005). https://doi.org/10.1007/s11745-005-1380-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1380-6

Keywords

Navigation