Skip to main content
Log in

Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue

  • Articles
  • Published:
Lipids

Abstract

Omega-3 PUFA of marine origin reduce adiposity in animals fed a high-fat diet. Our aim was to learn whether EPA and DHA could limit development of obesity and reduce cellularity of adipose tissue and whether other dietary FA could influence the effect of EPA/DHA. Weight gain induced by composite high-fat diet in C57BL/6J mice was limited when the content of EPA/DHA was increased from 1 to 12% (wt/wt) of dietary lipids. Accumulation of adipose tissue was reduced, especially of the epididymal fat. Low ratio of EPA to DHA promoted the effect. A higher dose of EPA/DHA was required to reduce adiposity when admixed to diets that did not promote obesity, the semisynthetic high-fat diets rich in EFA, either α-linolenic acid (ALA, 18∶3 n−3, the precursor of EPA and DHA) or linoleic (18∶2 n−6) acid. Quantification of adipose tissue DNA revealed that except for the diet rich in ALA the reduction of epididymal fat was associated with 34–50% depression of tissue cellularity, similar to the 30% caloric restriction in the case of the high-fat composite diet. Changes in plasma markers and adipose gene expression indicated improvement of lipid and glucose metabolism due to EPA/DHA even in the context of the diet rich in ALA. Our results document augmentation of the antiadipogenic effect of EPA/DHA during development of obesity and suggest that EPA/DHA could reduce accumulation of body fat by limiting both hypertrophy and hyperplasia of fat cells. Increased dietary intake of EPA/DHA may be beneficial regardless of the ALA intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

α-linolenic acid

CR:

caloric restriction by 30% compared with ad libitum fed mice

HF:

high-fat

cHF diet:

composite high-fat diet

cHF-F1 and cHF-F2:

composite high-fat diets enriched with fish oil concentrate

sHFc:

semisynthetic high-fat diet based on corn oil

HFc-F1, sHFc-F2:

semisynthetic high-fat diets based on corn oil enriched with fish oil concentrate

sHFf:

semisynthetic high-fat diet based on flaxseed oil

sHEf-F1, sHFf-F2:

semisynthetic high-fat diets based on flaxseed oil enriched with fish oil concentrate

NEFA:

nonesterified FA

and sHF diet:

semisynthetic high-fat diet

References

  1. Takahashi, Y., and Ide, T. (1999) Effect of Dietary Fats Differing in Degree of Unsaturation on Gene Expression in Rat Adipose Tissue, Ann. Nutr. Metab. 43, 86–97.

    Article  PubMed  CAS  Google Scholar 

  2. Raclot, T., Groscolas, R., Langin, D., and Ferre, P. (1997) Site-Specific Regulation of Gene Expression by n−3 Polyunsaturated Fatty Acids in Rat White Adipose Tissues, J. Lipid Res. 38, 1963–1972.

    PubMed  CAS  Google Scholar 

  3. Shillabeer, G., and Lau, D.C. (1994) Regulation of New Fat Cell Formation in Rats: The Role of Dietary Fats, J. Lipid Res. 35, 592–600.

    PubMed  CAS  Google Scholar 

  4. Azain, M.J. (2004) Role of Fatty Acids in Adipocyte Growth and Development, J. Anim. Sci. 82, 916–924.

    PubMed  CAS  Google Scholar 

  5. Hill, J.O., Peters, J.C., Lin, D., Yakubu, F., Greene, H., and Swift, L. (1993) Lipid Accumulation and Body Fat Distribution Is Influenced by Type of Dietary Fat Fed to Rats, Int. J. Obes. Relat. Metab. Disord. 17, 223–236.

    PubMed  CAS  Google Scholar 

  6. Ikemoto, S., Takahashi, M., Tsunoda, N., Maruyama, K., Itakura, H., and Ezaki, O. (1996) High-Fat Diet-Induced Hyperglycemia and Obesity in Mice: Differential Effects of Dietary Oils, Metabolism 45, 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  7. Hun, C.S., Hasegawa, K., Kawabata, T., Kato, M., Shimokawa, T., and Kagawa, Y. (1999) Increased Uncoupling Protein2 mRNA in White Adipose Tissue, and Decrease in Leptin, Visceral Fat, Blood Glucose, and Cholesterol in KK-Ay Mice Fed with Eicosapentaenoic and Docosahexaenoic Acids in Addition to Linolenic Acid, Biochem. Biophys. Res. Commun. 259, 85–90.

    Article  PubMed  CAS  Google Scholar 

  8. Oudart, H., Groscolas, R., Calgari, C., Nibbelink, M., Leray, C., Le Maho, Y., and Malan, A. (1997) Brown Fat Thermogenesis in Rats Fed High-Fat Diets Enriched with n−3 Polyunsaturated Fatty Acids, Int. J. Obes. Relat. Metab. Disord. 21, 955–962.

    Article  PubMed  CAS  Google Scholar 

  9. Lapillonne, A., Clarke, S.D., and Heird, W.C. (2004) Polyunsaturated Fatty Acids and Gene Expression, Curr. Opin. Clin. Nutr. Metab. Care 7, 151–156.

    PubMed  CAS  Google Scholar 

  10. Raclot, T., and Oudart, H. (1999) Selectivity of Fatty Acids on Lipid Metabolism and Gene Expression, Proc. Nutr. Soc. 58, 633–646.

    Article  PubMed  CAS  Google Scholar 

  11. Belzung, F., Raclot, T., and Groscolas, R. (1993) Fish Oil n−3 Fatty Acids Selectively Limit the Hypertrophy of Abdominal Fat Depots in Growing Rats Fed High-Fat Diets, Am. J. Physiol. 264, R1111-R1118.

    PubMed  CAS  Google Scholar 

  12. Ruxton, C.H., Reed, S.C., Simpson, M.J., and Millington, K.J. (2004) The Health Benefits of Omega-3 Polyunsaturated Fatty Acids: A Review of the Evidence, J. Hum. Nutr. Diet. 17, 449–459.

    Article  PubMed  CAS  Google Scholar 

  13. Mori, T.A., Bao, D.Q., Burke, V., Puddey, I.B., Watts, G.F., and Beilin, L.J. (1999) Dietary Fish as a Major Component of a Weight-Loss Diet: Effect on Serum Lipids, Glucose, and Insulin Metabolism in Overweight Hypertensive Subjects, Am. J. Clin. Nutr. 70, 817–825.

    PubMed  CAS  Google Scholar 

  14. Sinclair, A.J., Attar-Bashi, N.M., and Li, D. (2002) What Is the Role of α-Linolenic Acid for Mammals? Lipids 37, 1113–1123.

    PubMed  CAS  Google Scholar 

  15. Couet, C., Delarue, J., Ritz, P., Antoine, J.-M., and Lamisse, F. (1997) Effect of Dietary Fish Oil on Body Fat Mass and Basal Fat Oxidation in Healthy Adults, Int. J. Obes. 21, 637–643.

    Article  CAS  Google Scholar 

  16. Benhizia, F., Hainault, I., Serougne, C., Lagrande, D., Hajduch, E., Guichard, C., Malewiak, M.-I., Quignard-Boulange, A., Lavau, M., and Griglio, S. (1994) Effects of Fish Oil-Lard Diet on Rat Plasma Lipoproteins, Liver FAS, and Lipolytic Enzymes, Am. J. Physiol. 267, E975-E982.

    PubMed  CAS  Google Scholar 

  17. Parrish, C.C., Pathy, D.A., and Angel, A. (1990) Dietary Fish Oils Limit Adipose Tissue Hypertrophy in Rats, Metabolism 39, 217–219.

    Article  PubMed  CAS  Google Scholar 

  18. Cha, S.H., Fukushima, A., Sakuma, K., and Kagawa, Y. (2001) Chronic Docosahexaenoic Acid Intake Enhances Expression of the Gene for Uncoupling Protein 3 and Affects Pleiotropic mRNA Levels in Skeletal Muscle of Aged C57BL/6njcl Mice, J. Nutr. 131, 2636–2642.

    PubMed  CAS  Google Scholar 

  19. Tsuboyama-Kasaoka, N., Takahashi, M., Kim, H., and Ezaki, O. (1999) Up-Regulation of Liver Uncoupling Protein-2 mRNA by Either Fish Oil Feeding or Fibrate Administration in Mice, Biochem. Biophys. Res. Commun. 257, 879–885.

    Article  PubMed  CAS  Google Scholar 

  20. Surwit, R.S., Kuhn, C.M., Cochrane, C., McCubbin, J.A., and Feinglos, M.N. (1988) Diet-Induced Type II Diabetes in C57BL/6J Mice, Diabetes 37, 1163–1167.

    PubMed  CAS  Google Scholar 

  21. West, D.B., Boozer, C.N., Moody, D.L., and Atkinson, R.L. (1992) Dietary Obesity in Nine Inbred Mouse Strains, Am. J. Physiol. 262, R1025-R1032.

    PubMed  CAS  Google Scholar 

  22. Kopecky, J., Hodny, Z., Rossmeisl, M., Syrovy, I., and Kozak, L.P. (1996) Reduction of Dietary Obesity in the aP2-Ucp Transgenic Mice: Physiology and Adipose Tissue Distribution, Am. J. Physiol. 270, E768-E775.

    PubMed  CAS  Google Scholar 

  23. Parekh, P.I., Petro, A.E., Tiller, J.M., Feinglos, M.N., and Surwit, R.S. (1998) Reversal of Diet-Induced Obesity and Diabetes in C57BL/6J Mice, Metabolism 47, 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  24. Cinti, S. (1999) The Adipose Organ, Editrice Kurtis, Milano, Italy.

    Google Scholar 

  25. Salmon, D.M., and Flatt, J.P. (1985) Effect of Dietary Fat Content on the Incidence of Obesity Among ad libitum Fed Mice, Int. J. Obes. 9, 443–449.

    PubMed  CAS  Google Scholar 

  26. Stefl, B., Janovska, A., Hodny, Z., Rossmeisl, M., Horakova, M., Syrovy, I., Bemova, J., Bendlova, B., and Kopecky, J. (1998) Brown Fat Is Essential for Cold-Induced Thermogenesis but Not for Obesity Resistance in aP2-Ucp Mice, Am. J. Physiol. 274, E527-E533.

    PubMed  CAS  Google Scholar 

  27. Flachs, P., Novotny, J., Baumruk, F., Bardova, K., Bourova, L., Miksik, I., Sponarova, J., Svoboda, P., and Kopecky, J. (2002) Impaired Noradrenaline-Induced Lipolysis in White Fat of aP2-Ucp1 Transgenic Mice Is Associated with Changes in G-Protein Levels, Biochem. J. 364, 369–376.

    Article  PubMed  CAS  Google Scholar 

  28. Christiansen, E.N., Flatmark, T., and Kryvi, H. (1981) Effects of Marine Oil Diet on Peroxisomes and Mitochondria of Rat Liver: A Combined Biochemical and Morphometric Study, Eur. J. Cell Biol. 26, 11–20.

    PubMed  CAS  Google Scholar 

  29. Oudart, H., Trayhurn, P., and Rayner, D.V. (2000) Effect of n−3 Polyunsaturated Fatty Acids on Uncoupling Protein 1–3 Gene Expression, Int. J. Obes. Metab. Disord. 24 (Suppl. 1), S130 (Abstract No. 424).

    Google Scholar 

  30. Amusquivar, E., and Herrera, E. (2003) Influence of Changes in Dietary Fatty Acids During Pregnancy in Placental and Fetal Fatty Acid Profile in the Rat, Biol. Neonate 83, 136–145.

    Article  PubMed  CAS  Google Scholar 

  31. Massiera, F., Saint-Marc, P., Seydoux, J., Murata, T., Kobayashi, T., Narumiya, S., Guesnet, P., Amri, E.Z., Negrel, R., and Ailhaud, G. (2003) Arachidonic Acid and Prostacyclin Signaling Promote Adipose Tissue Development: A Human Health Concern? J. Lipid Res. 44, 271–279.

    Article  PubMed  CAS  Google Scholar 

  32. Sessler, A.M., and Ntambi, J.M. (1998) Polyunsaturated Fatty Acid Regulation of Gene Expression, J. Nutr. 128, 923–926.

    PubMed  CAS  Google Scholar 

  33. Ringbom, T., Huss, U., Stenholm, A., Flock, S., Skattebol, L., Perera, P., and Bohlin, L. (2001) COX-2 Inhibitory Effects of Naturally Occurring and Modified Fatty Acids, J. Nat. Prod. 64, 745–749.

    Article  PubMed  CAS  Google Scholar 

  34. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B., and Kozak, L.P. (1995) Expression of the Mitochondrial Uncoupling Protein Gene from the aP2 Gene Promoter Prevents Genetic Obesity, J. Clin. Invest. 96, 2914–2923.

    Article  PubMed  CAS  Google Scholar 

  35. Kopecky, J., Rossmeisl, M., Hodny, Z., Syrovy, I., Horakova, M., and Kolarova, P. (1996) Reduction of Dietary Obesity in the aP2-Ucp Transgenic Mice: Mechanism and Adipose Tissue Morphology, Am. J. Physiol. 270, E776-E786.

    PubMed  CAS  Google Scholar 

  36. Porter, M.H., Fine, J.B., Cutchins, A.G., Bai, Y., and DiGirolamo, M. (2004) Sexual Dimorphism in the Response of Adipose Mass and Cellularity to Graded Caloric Restriction, Obes. Res. 12, 131–140.

    PubMed  Google Scholar 

  37. Li, Y., Bujo, H., Takahashi, K., Shibasaki, M., Zhu, Y., Yoshida, Y., Otsuka, Y., Hashimoto, N., and Saito, Y. (2003) Visceral Fat: Higher Responsiveness of Fat Mass and Gene Expression to Calorie Restriction than Subcutaneous Fat, Exp. Biol. Med. (Maywood) 228, 1118–1123.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kopecky.

About this article

Cite this article

Ruzickova, J., Rossmeisl, M., Prazak, T. et al. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39, 1177–1185 (2004). https://doi.org/10.1007/s11745-004-1345-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1345-9

Keywords

Navigation