Lipids

, Volume 39, Issue 11, pp 1125–1132 | Cite as

Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers

  • Charles N. Serhan
  • Makoto Arita
  • Song Hong
  • Katherine Gotlinger
Article

Abstract

The molecular basis for the beneficial impact of essential omega-3 (n−3) FA remains of interest. Recently, we identified novel mediators generated from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that displayed potent bioactions identified first in resolving inflammatory exudates and in tissues enriched with DHA. The trivial names resolvin (resolution phase interaction products) and docosatrienes were introduced for the bioactive compounds from these novel series since they possess potent anti-inflammatory and immunoregulatory actions. Compounds derived from EPA carrying potent biological actions (i.e., 1–10 nM range) are designated E series and denoted resolvins of the E series (resolvin E1 or RvE1), and those biosynthesized from the precursor DHA are denoted resolvins of the D series (resolvin D1 or RvD1). The number 1 designates the bioactive compounds in this family (e.g., 1–4). Bioactive members from DHA-containing conjugated triene structures or docosatrienes (DT) that possess immunoregulatory and neuroprotective actions were termed neuroprotectins. Aspirin treatment initiates a related epimeric series by triggering endogenous formation of the 17R-D series resolvins and docosatrienes. These epimers are denoted as aspirin-triggered (AT)-RvD and DT, and possess potent anti-in-flammatory actions in vivo essentially equivalent to their 17S series pathway products. These include five distinct series: (i) 18R resolvins from EPA (i.e., RvE1); (ii) 17R series (AT) resolvins from DHA (RvD1 through RvD4); (iii) 17S series resolvins from DHA (RvD1 through RvD4), (iv) DT from DHA; and (v) their AT form 17R series DT. In this article, we provide an overview of the formation and actions of these newly uncovered pathways and products.

Abbreviations

17R-HDHA

17R-hydroxy-docosahexaenoic acid

18R-HEPE

18R-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid

ASA

aspirin

AT

aspirin-triggered

ATL

aspirin-triggered lipoxin

COX

cyclooxygenase

DHA

docosahexaenoic acid

DT

docosatrienes

EPA

eicosapentaenoic acid

IL

interleukin

LOX

lipoxygenase

LX

lipoxins

PMN

polymorphonuclear neutrophils

RvD1

resolvin D1

RvE1

resolvin E1

TNF

tumor necrosis factor α

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burr, G.O., and Burr, M.M. (1929) A New Deficiency Disease produced by the Rigid Exclusion of Fat from the Diet, J. Biol. Chem. 82, 345.Google Scholar
  2. 2.
    Lands, W.E.M. (ed.) (1987) Proceedings of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids, American Oil Chemists' Society, Champaign, IL.Google Scholar
  3. 3.
    Bazan, N.G. (1990) Supply of n−3 Polyunsaturated Fatty Acids and Their Significance in the Central Nervous System, in Nutrition and the Brain (Wurtman, R.J., and Wurtman, J.J., eds.), pp. 1–22, Raven Press, New York.Google Scholar
  4. 4.
    Simopoulos, A.P., Leaf, A., and Salem, N., Jr. (1999) Workshop on the Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids, J. Am. Coll. Nutr. 18, 487–489.PubMedGoogle Scholar
  5. 5.
    Salem, N., Jr., Litman, B., Kim, H.-Y., and Gawrisch, K. (2001) Mechanisms of Action of Docosahexaenoic Acid in the Nervous System, Lipids 36, 945–959.PubMedCrossRefGoogle Scholar
  6. 6.
    Helgadottir, A., Manolescu, A., Thorleifsson, G., Gretarsdottir S., Jonsdottir, H., Thorsteinsdottir U., Samani, N.J., Godmundsson, G., Grant, S.F.A., Thorgeirsson, G., Sveinbjornsdottir, S., Valdimarsson, E.M., Matthiasson, S.E., Johannsson, H., Gudmundsdottir, O., Gurney, M.E., Sainz, J., Thorhallsdottir, M., Andresdottir, A., Frigge, M.L., Topol, E.J., Kong, A., Gudnason, V., Hakonarson, H., Gulcher, J.R., and Stefansson, K. (2004) The Gene Encoding 5-Lipoxygenase Activating Protein Confers Risk of Myocardial Infarction and Stroke, Nat. Genet. 36, 233–239.PubMedCrossRefGoogle Scholar
  7. 7.
    Erlinger, T.P., Platz, E.A., Rifai, N., and Helzlsouer, K.J. (2004) C-Reactive Protein and the Risk of Incident Colorectal Cancer, JAMA 291, 585–590.PubMedCrossRefGoogle Scholar
  8. 8.
    Pasche, B., and Serhan, C.N. (2004) Is C-Reactive Protein an Inflammation Opsonin that Signals Colon Cancer Risk? JAMA 291, 623–624.PubMedCrossRefGoogle Scholar
  9. 9.
    Gallin, J.I., Snyderman, R., Fearon, D.T., Haynes, B.F., and Nathan, C. (eds.) (1999) Inflammation: Basic Principles and Clinical Correlates, Lippincott Williams & Wilkins, Philadelphia, 1360 pp.Google Scholar
  10. 10.
    Van Dyke, T.E., and Serhan, C.N. (2003) Resolution of Inflammation: A New Paradigm for the Pathogenesis of Periodontal Diseases J. Dent. Res. 82, 82–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Serhan, C.N., Clish, C.B., Brannon, J., Colgan, S.P., Chiang, N., and Gronert, K. (2000) Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2-Nonsteroidal Antiinflammatory Drugs and Transcellular Processing, J. Exp. Med. 192, 1197–1204.PubMedCrossRefGoogle Scholar
  12. 12.
    Serhan, C.N., Hong, S., Gronert, K., Colgan, S.P., Devchand, P.R., Mirick, G., and Moussignac, R.-L. (2002) Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment that Counter Proinflammation Signals, J. Exp. Med. 196, 1025–1037.PubMedCrossRefGoogle Scholar
  13. 13.
    Hong, S., Gronert, K., Devchand, P., Moussignac, R.-L., and Serhan, C.N. (2003) Novel Docosatrienes and 17S-Resolvins Generated from Docosahexaenoic Acid in Murine Brain, Human Blood and Glial Cells: Autacoids in Anti-inflammation, J. Biol. Chem. 278, 14677–14687.PubMedCrossRefGoogle Scholar
  14. 14.
    Marcheselli, V.L., Hong, S., Lukiw, W.J., Hua Tian, X., Gronert, K., Musto, A., Hardy, M., Gimenez, J.M., Chiang, N., Serhan, C.N., and Bazan, N.G. (2003) Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-Mediated Leukocyte Infiltration and Pro-inflammatory Gene Expression, J. Biol. Chem. 278, 43807–43817.PubMedCrossRefGoogle Scholar
  15. 15.
    Mukherjee, P.K., Marcheselli, V.L., Serhan, C.N., and Bazan, N.G. (2004) Neuroprotectin D1: A Docosahexaenoic Acid-Derived Docosatriene Protects Human Retinal Pigment Epithelial Cells from Oxidative Stress, Proc. Natl. Acad. Sci. USA 101, 8491–8496.PubMedCrossRefGoogle Scholar
  16. 16.
    Lehr, H.-A., Olofsson, A.M., Carew, T.E., Vajkoczy, P., von Andrian, U.H., Hübner, C., Berndt, M.C., Steinberg, D., Messmer, K., and Arfors, K.E. (1994) P-Selectin Mediates the Interaction of Circulating Leukocytes with Platelets and Microvascular Endothelium in Response to Oxidized Lipoprotein in vivo, Lab. Invest. 71, 380–386.PubMedGoogle Scholar
  17. 17.
    Mora, J.R., Bono, M.R., Manjunath, N., Weninger, W., Cavanagh, L.L., Rosemblatt, M., and von Andrian, U.H. (2003) Selective Imprinting of Gut-Homing T Cells by Peyer's Patch Dendritic Cells, Nature 424, 88–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Serhan, C.N., Hamberg, M., and Samuelsson, B. (1984) Lipoxins: Novel Series of Biologically Active Compounds Formed from Arachidonic Acid in Human Leukocytes, Proc. Natl. Acad. Sci. USA 81, 5335–5339.PubMedCrossRefGoogle Scholar
  19. 19.
    Serhan, C.N., and Sheppard, K.A. (1990) Lipxin Formation During Human Neutrophil-Platelet Interactions. Evidence for the Transformation of Leukotriene A4 by Platelet 12-Lipoxygenase in vitro, J. Clin. Invest. 85, 772–780.PubMedCrossRefGoogle Scholar
  20. 20.
    Marcus, A.J. (1999) Platelets: Their Role in Hemostasis, Thrombosis, and Inflammation, in Inflammation: Basic Principles and Clinical Correlates (Gallin, J.I., and Snyderman, R., eds.), pp. 77–95, Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  21. 21.
    Fiore, S., Ryeom, S.W., Weller, P.F., and Serhan, C.N. (1992) Lipoxin Recognition Sites. Specific Binding of Labeled Lipoxin A4 with Human Neutrophils, J. Biol. Chem. 267, 16168–16176.PubMedGoogle Scholar
  22. 22.
    Fiore, S., Maddox, J.F., Perez, H.D., and Serhan, C.N. (1994) Identification of a Human cDNA Encoding a Functional High Affinity Lipoxin A4 Receptor, J. Exp. Med. 180, 253–260.PubMedCrossRefGoogle Scholar
  23. 23.
    Bae, Y.-S., Park, J.C., He, R., Ye, R.D., Kwak, J.-Y., Suh, P.-G., and Ryu, S.H., (2003) Differential Signaling of Formyl Peptide Receptor-Like 1 by Trp-Lys-Tyr-Met-Val-Met-CONH2 or Lipoxin A4 in Human Neutrophils, Mol. Pharmacol. 63, 721–730.CrossRefGoogle Scholar
  24. 24.
    Gewirtz, A.T., Collier-Hyams, L.S., Young, A.N., Kucharzik, T., Guilford, W.J., Parkinson, J.F., Williams, I.R., Neish, A.S., and Madara, J.L. (2002) Lipoxin A4 Analogs Attenuate Induction of Intestinal Epithelial Proinflammatory Gene Expression and Reduce the Severity of Dextran Sodium Sulfate-Induced Colitis, J. Immunol. 168, 5260–5267.PubMedGoogle Scholar
  25. 25.
    Maddox, J.F., and Serhan, C.N. (1996) Lipoxin A4 and B4 Are Potent Stimuli for Human Monocyte Migration and Adhesion: Selective Inactivation by Dehydrogenation and Reduction, J. Exp. Med. 183, 137–146.PubMedCrossRefGoogle Scholar
  26. 26.
    Godson, C., Mitchell, S., Harvey, K., Petasis, N.A., Hogg, N., and Brady, H.R. (2000) Cutting Edge: Lipoxins Rapidly Stimulate Nonphlogistic Phagocytosis of Apoptotic Neutrophils by Monocyte-Derived Macrophages, J. Immunol., 164, 1663–1667.PubMedGoogle Scholar
  27. 27.
    Clària, J., and Serhan, C.N. (1995) Aspirin Triggers Previously Undescribed Bioactive Eicosanoids by Human Endothelial Cell-Leukocyte Interactions, Proc. Natl. Acad. Sci. USA 92, 9475–9479.PubMedCrossRefGoogle Scholar
  28. 28.
    Perretti, M., Chiang, N., La, M., Fierro, I.M., Marullo, S., Getting, S.J., Solito, E., and Serhan, C.N. (2002) Endogenous Lipid- and Peptide-Derived Anti-inflammatory Pathways Generated with Glucocorticoid and Aspirin Treatment Activate the Lipoxin A(4) Receptor, Nat. Med. 8, 1296–1302.PubMedCrossRefGoogle Scholar
  29. 29.
    Vane, J.R. (2002) Back to an Aspirin a Day? Science 296, 474–475.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng, Y., Austin, S.C., Rocca, B., Koller, B.H., Coffman, T.M., Grosser, T., Lawson, J.A., and FitzGerald, G.A. (2002) Role of Prostacyclin in the Cardiovascular Response to Thromboxane A2, Science 296, 539–541.PubMedCrossRefGoogle Scholar
  31. 31.
    Fierro, I.M., Colgan, S.P., Bernasconi, G., Petasis, N.A., Clish, C.B., Arita, M., and Serhan, C.N. (2003) Lipoxin A4 and Aspirin-Triggered 15-Epi-Lipoxin A4 Inhibit Human Neutrophil Migration: Comparisons Between Synthetic 15 Epimers in Chemotaxis and Transmigration with Microvessel Endothelial Cells and Epithelial Cells, J. Immunol. 170, 2688–2694.PubMedGoogle Scholar
  32. 32.
    Fierro, I.M., Kutok, J.L., and Serhan, C.N. (2002) Novel Lipid Mediator Regulators of Endothelial Cell Proliferation and Migration: Aspirin-Triggered-15R-Lipoxin A4 and Lipoxin A4, J. Pharmacol. Exp. Ther. 300, 385–392.PubMedCrossRefGoogle Scholar
  33. 33.
    Kieran, N.E., Doran, P.P., Connolly, S.B., Greenan, M.-C., Higgins, D.F., Leonard, M., Godson, C., Taylor, C.T., Henger, A., Kretzler, M., et al. (2003) Modification of the Transcriptiomic Response to Renal Ischemia/Reperfusion Injury by Lipoxin Analog, Kidney Int. 64, 480–492.PubMedCrossRefGoogle Scholar
  34. 34.
    Devchand, P.R., Arita, M., Hong, S., Bannenberg, G., Moussignac, R.-L., Gronert, K., and Serhan, C.N. (2003) Human ALX Receptor Regulates Neutrophil Recruitment in Transgenic Mice: Roles in Inflammation and Host-Defense, FASEB J. 17, 652–659.PubMedCrossRefGoogle Scholar
  35. 35.
    Serhan, C.N., Jain, A., Marleau, S., Clish, C., Kantarci, A., Behbehani B., Colgan, S.P., Stahl, G.L., Merched, A., Petasis, N.A., Chan, L., and Van Dyke, T.E. (2003) Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-inflammatory Lipid Mediators, J. Immunol. 171, 6856–6865.PubMedGoogle Scholar
  36. 36.
    Weissmann, G., Smolen, J.E., and Korchak, H.M. (1980) Release of Inflammatory Mediators from Stimulated Neutrophils, N. Engl. J. Med. 303, 27–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Samuelsson, B., (1982) From Studies of Biochemical Mechanisms to Novel Biological Mediators: Prostaglandin Endoperoxides, Thromboxanes and Leukotrienes, in Les Prix Nobel: Nobel Prizes, Presentations, Biographies and Lectures, pp. 153–174, Almqvist & Wiksell, Stockholm.Google Scholar
  38. 38.
    Vane, J.R. (1982) Adventures and Excursions in Bioassay: The Stepping Stones to Prostacyclin, in Les Prix Nobel: Nobel Prizes, Presentations, Biographies and Lectures, pp. 181–206, Almqvist & Wiksell, Stockholm.Google Scholar
  39. 39.
    GISSI-Prevenzione Investigators. (1999) Dietary Supplementation with n−3 Polyunsaturated Fatty Acids and Vitamin E After Myocardial Infarction: Results of the GISSI-Prevenzione Trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico, Lancet 354, 447–455.CrossRefGoogle Scholar
  40. 40.
    Marchioli, R., Barzi, F., Boma, E., Chieffo, C., Di Gregorio, D., Di Mascio, R., Franzosi, M.G., Geraci, E., Levantesi, G., Maggioni, A.P., et al. (2002) Early Protection Against Sudden Death by n−3 Polyunsaturated Fatty Acids After Myocardial Infarction: Time-Course Analysis of the Results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione, Circulation 105, 1897–1903.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosenstein, E.D., Kushner, L.J., Kramer, N., and Kazandjian, G. (2003) Pilot Study of Dietary Fatty Acid Supplementation in the Treatment of Adult Periodontitis, Prostaglandins Leukot. Essent. Fatty Acids 68, 213–218.PubMedCrossRefGoogle Scholar
  42. 42.
    Bazan, N.G. (1992) Supply, Uptake, and Utilization of Docosahexaenoic Acid During Photoreceptor Cell Differentiation, Nestle Nutrition Workshop Series 28, 121–133.Google Scholar
  43. 43.
    Lee, T.H., Mencia-Huerta, J.-M., Shih, C., Corey, E.J., Lewis, R.A., and Austen, K.F. (1984) Effects of Exogenous Arachidonic, Eicosapentaenoic, and Docosahexaenoic Acids on the Generation Of 5-Lipoxygenase Pathway Products by Ionophore-Activated Human Neutrophils, J. Clin. Invest. 74, 1922–1933.PubMedCrossRefGoogle Scholar
  44. 44.
    Sawazaki, S., Salem, N., Jr., and Kim, H.-Y. (1994) Lipoxygenation of Docosahexaenoic Acid by the Rat Pineal Body, J. Neurochem. 62, 2437–2447.PubMedCrossRefGoogle Scholar
  45. 45.
    Reich, E.E., Zackert, W.E., Brame, C.J., Chen, Y., Roberts, L.J., II, Hachey, D.L., Montine, T.J., and Morrow, J.D. (2000) Formation of Novel D-Ring and E-Ring Isoprostane-Like Compounds (D4/E4-Neuroprostanes) In Vivo from Docosahexaenoic Acid, Biochemistry 39, 2376–2383.PubMedCrossRefGoogle Scholar
  46. 46.
    VanRollins, M., Baker, R.C., Sprecher, H.W., and Murphy, R.C. (1984) Oxidation of Docosahexaenoic Acid by Rat Liver Microsomes, J. Biol. Chem. 259, 5776–5783.PubMedGoogle Scholar
  47. 47.
    Lands, W.E.M. (2003) Diets Could Prevent Many Diseases, Lipids 38, 317–321.PubMedCrossRefGoogle Scholar
  48. 48.
    Winyard, P.G., and Willoughby, D.A. (eds.) (2003) Inflammation Protocols, Humana Press, Totowa, NJ.Google Scholar
  49. 49.
    Lu, Y., Hong, S., Tjonahen, E., and Serhan, C.N. (2003) Lipid Mediator Lipidomics: Databases and Search Algorithms of Electric Spray Ionization/Tandem Mass and Ultraviolet Spectra for Structural Elucidation, Paper presented at the 5th Winter Eicosanoid Conference, Baltimore, March 9–12.Google Scholar
  50. 50.
    Capdevila, J.H., Wei, S., Helvig, C., Falck, J.R., Belosludtsev, Y., Truan, G., Graham-Lorence, S.E., and Peterson, J.A. (1996) The Highly Stereoselective Oxidation of Polyunsaturated Fatty Acids by Cytochrome P450BM-3, J. Biol. Chem. 271, 22663–22671.PubMedCrossRefGoogle Scholar
  51. 51.
    Arita, M., Bianchini, F., Aliberti, J., Sher, A., Chiang, N., Hong, S., Yang, R., Tetasis, N.A., and Serhan, C.N. (2005) Stereochemical Assignment, Anti-inflammatory Properties, and Receptor for the Omega-3 Lipid Mediator Resolvin E1, J. Exp. Med. in press.Google Scholar
  52. 52.
    Corey, E.J., Shih, C., and Cashman, J.R. (1983) Docosahexaenoic Acid Is a Strong Inhibitor of Prostaglandin but Not Leukotriene Biosynthesis, Proc. Natl. Acad. Sci. USA 80, 3581–3584.PubMedCrossRefGoogle Scholar
  53. 53.
    Serhan, C.N., and Oliw, E. (2001) Unorthodox routes to Prostanoid Formation: New Twists in Cyclooxygenase-Initiated Pathways, J. Clin. Invest. 107, 1481–1489.PubMedCrossRefGoogle Scholar
  54. 54.
    Coffa, G., and Brash, A.R. (2004) A Single Active Site Residue Directs Oxygenation Stereospecificity in Lipoxygenases: Stereocontrol Is Linked to the Position of Oxygenation, Proc. Natl. Acad. Sci. USA 101, 15579–15584.PubMedCrossRefGoogle Scholar
  55. 55.
    Hessler, T.G., Thomson, M.J., Benscher, D., Nachit, M.M., and Sorrells, M.E. (2002) Association of a Lipoxygenase Locus, Lpx-B1, with Variation in Loxygenase Activity in Durum Wheat Seeds, Crop Sci. 42, 1695–1700.CrossRefGoogle Scholar
  56. 56.
    Rådmark, O. (2002) Arachidonate 5-Lipoxygenase, Prostaglandins Other lipid Mediat. 68–69, 211–234.PubMedCrossRefGoogle Scholar
  57. 57.
    Funk, C.D., Chen, X.S., Johnson, E.N., and Zhao, L. (2002) Lipoxygenase Genes and Their Targeted Disruption, Prostaglandins Other Lipid Mediat. 68–69, 303–312.PubMedCrossRefGoogle Scholar
  58. 58.
    Kuhn, H., and Thiele, B.J. (1999) The Diversity of the Lipoxygenase Family. Many Sequence Data but Little Information on Biological Significance, FEBS Lett. 449, 7–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Furstenberger, G., Marks, F., and Krieg, P. (2002) Arachidonate 8(S)-Lipoxygenase, Prostaglandins Other Lipid Mediat. 68–69, 235–243.PubMedCrossRefGoogle Scholar
  60. 60.
    Vance, R.E., Hong, S., Gronert, K., Serhan, C.N., and Mekalanos, J.J. (2004) The Opportunistic Pathogen Pseudomonas aeruginosa Carries a Novel Secretable Arachidonate 15-Lipoxygenase, Proc. Natl. Acad. Sci. USA 101, 2135–2139.PubMedCrossRefGoogle Scholar
  61. 61.
    Rowley, A.F., Lloyd-Evans, P., Barrow, S.E., and Serhan, C.N. (1994) Lipoxin Biosynthesis by Trout Macrophages Involves the Formation of Epoxide Intermediates, Biochemistry 33, 856–863.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2004

Authors and Affiliations

  • Charles N. Serhan
    • 1
  • Makoto Arita
    • 1
  • Song Hong
    • 1
  • Katherine Gotlinger
    • 1
  1. 1.Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBoston

Personalised recommendations