Skip to main content
Log in

Transient confinement zones: A type of lipid raft?

  • Published:
Lipids

Abstract

Many important signaling events are initiated at the cell membrane. To facilitate efficient signal transduction upon stimulation, membrane microdomains, also known as lipid rafts, are postulated to serve as platforms to recruit components involved in the signaling complex, but few methods exist to study rafts in vivo. Single particle tracking provides an approach to study the plasma membrane of living cells on the nano-scale. The trajectories of single gold particles bound to membrane proteins and lipids are characterized in terms of both random and confined diffusion; the latter occurs in “transient confinement zones”. Here we review transient confinement zones and some of their implications for membrane structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DRM:

detergent-resistant membrane(s)

Fabs:

single-valence fragments

GFP:

green fluorescent protein

GPI:

glycosylphosphatidylinositol

GSL:

glycosphingolipids

RCT:

relative confinement time

SFK:

Src family kinase

SPT:

single particle tracking

TCZ:

transient confinement zone(s)

References

  1. Singer, S.J. and Nicolson, G.L. (1972) The fluid mosaic model of the structure of cell membranes, Science 175(23): 720–31.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson, K., Sheets, E.D. and Simson, R. (1995) Revisiting the fluid mosaic model of membranes, Science 268:1441–1442.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, D.A. and J.K. Rose (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell 68:533–44.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, D.A. and London, E. (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240:1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, D.A. and London, E. Functions of lipid rafts in biological membranes, Annu. Rev. Cell Dev. Biol. 14:111–36.

  6. Simons, K. and Ikonen, E. (2000) How cells handle cholesterol, Science 290:1721–1726.

    Article  PubMed  CAS  Google Scholar 

  7. Kusumi, A., Koyama-Honda, I. and Suzuki, K. (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts, Traffic 5:213–230.

    Article  PubMed  CAS  Google Scholar 

  8. Jacobson, K., and Dietrich, C., Looking at lipid rafts? Trends Cell Biol. 9:87–91.

  9. Simons K. and Ikonen, E. (1997) Functional rafts in cell membranes, Nature 387:569–572.

    Article  PubMed  CAS  Google Scholar 

  10. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction, Nat. Rev. Mol. Cell Biol. 1:31–9.

    Article  PubMed  CAS  Google Scholar 

  11. Shogomori, H. and Brown, D.A. (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly, Biol. Chem. 384:1259–1263.

    Article  PubMed  CAS  Google Scholar 

  12. Schuck, S., Honsho, M., Ekroos, K., ShevchenKo, A. and Simons, K. (2003) Resistance of cell membranes to different detergents, Proc. Natl. Acad. Sci. USA 100:5795–5800.

    Article  PubMed  CAS  Google Scholar 

  13. Heerklotz, H. (2002) Triton promotes domain formation in lipid raft mixtures, Biophys. J. 83:2693–2701.

    Article  PubMed  CAS  Google Scholar 

  14. Malinska, K., Malinsky, J., Opekarova, M. and Tanner, W. (2003) Visualization of protein compartmentation within the plasma membrane of living yeast cells, Mol. Biol. Cell 11:4427–4436.

    Article  Google Scholar 

  15. Zacharias, D.A., Violin, J.D., Newton, A.C. and Tsien, R.Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells, Science 296:913–916.

    Article  PubMed  CAS  Google Scholar 

  16. Sharma, P., Varma, R., Sarasij, R.C., Ira, Groussel, K., Krishnamoorthy G., Rao, M. and Mayor, S. (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes, Cell 116:577–89.

    Article  PubMed  CAS  Google Scholar 

  17. Simson, R., Sheets, E.D. and Jacobson, K. (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis, Biophys. J. 69:989–993.

    Article  PubMed  CAS  Google Scholar 

  18. Simson, R., Yang, B., Moore, S.E., Doherty, P., Walsh, F.S. and Jacobson, K.A. (1998) Structural mosaicism on the submicron scale in the plasma membrane, Biophys. J. 74:297–308.

    Article  PubMed  CAS  Google Scholar 

  19. Saxton, M.J. (1993) Lateral diffusion in an archipelago. Single-particle diffusion, Biophys. J. 64:1766–1780.

    Article  PubMed  CAS  Google Scholar 

  20. Sheets, E.D., Lee, G.M., Simson, R. and Jacobson, K. (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane, Biochemistry 36: 12449–12458.

    Article  PubMed  CAS  Google Scholar 

  21. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. and Jacobson, K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking, Biophys. J. 82:274–284.

    Article  PubMed  CAS  Google Scholar 

  22. Daumas, F., Destainville, N., Millot, C., Lopez, A., Dean, D., and Salome, L. (2003) Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking, Biophys. J. 84:356–366.

    Article  PubMed  CAS  Google Scholar 

  23. Daumas, F., Vannier, C., Serge, A., Triller, A., and Choquet, D. (2001) Interprotein interactions are responsible for the confined diffusion of a G-protein-coupled receptor at the cell surface, Biochem. Soc. Trans. 31:1001–1005.

    Article  Google Scholar 

  24. Meier, J., Vannier, C., Serge, A., Triller, A., and Choquet, D. (2001) Fast and reversible trapping of surface glycine receptors by gephyrin, Nat. Neurosci. 4:253–260.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson, K., Ishihara, A., and Inman, R. (1987) Lateral diffusion of proteins in membranes, Annu. Rev. Physiol. 49:163–75.

    Article  PubMed  CAS  Google Scholar 

  26. Sonnleitner, A., Schutz, G.J., and Schmidt, T. (1999) Free brownian motion of individual lipid molecules in biomembranes, Biophys. J. 77:2638–2642.

    Article  PubMed  CAS  Google Scholar 

  27. Lee, G.M., Zhang, F., Ishihara, A., McNeil, C.L., and Jacobson, K.A. (1993) Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids, J. Cell Biol. 120:25–35.

    Article  PubMed  CAS  Google Scholar 

  28. Ritchie, K., Iino, R., Fujiwara, T., Murase, K., and Kusumi, A. (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review), Mol. Membr. Biol. 20: 13–18.

    Article  PubMed  CAS  Google Scholar 

  29. Subczynski, W.K. and Kusumi, A. (2003) Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy, Biochim. Biophys. Acta. 1610:231–243.

    Article  PubMed  CAS  Google Scholar 

  30. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., and Kusumi, A. (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol. 157:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  31. Murase, K. Fujiwara, T., Umemura, Y., Suzuki, K., Iino, R., Yamashita, H., Saito, M., Murakoshi, H., Ritchie, K., and Kusumi, A. (2004) Ultrafine Membrane Compartments for Molecular Diffusion as Revealed by Single Molecule Techniques, Biophys. J. 86:4075–4093.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Jacobson.

About this article

Cite this article

Chen, Y., Yang, B. & Jacobson, K. Transient confinement zones: A type of lipid raft?. Lipids 39, 1115–1119 (2004). https://doi.org/10.1007/s11745-004-1337-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1337-9

Keywords

Navigation