Skip to main content
Log in

Quantitative determination of low density lipoprotein oxidation by FTIR and chemometric analysis

  • Method
  • Published:
Lipids

Abstract

This study was conducted to develop a quantitative FTIR spectroscopy method to measure LDL lipid oxidation products and determine the effect of oxidation on LDL lipid and protein. In vitro LDL oxidation at 37°C for 1 h produced a range of conjugated diene (CD) (0.14–0.26 mM/mg protein) and carbonyl contents (0.9–3.8 μg/g protein) that were used to produce calibration sets. Spectra were collected from the calibration set and partial least squares regression was used to develop calibration models from spectral regions 4000-650, 3750-3000, 1720-1500, and 1180-935 cm−1 to predict CD and carbonyl contents. The optimal models were selected based on their standard error of prediction (SEP), and the selected models were performance-tested with an additional set of LDL spectra. The best models for CD prediction were derived from spectral regions 4000-650 and 1180-935 cm−1 with the lowest SEP of 0.013 and 0.013 mM/mg protein, respectively. The peaks at 1745 (cholesterol and TAG ester C=O stretch), 1710 (carbonyl C-O stretch), and 1621 cm−1 (peptide C=O stretch) positively correlated with LDL oxidation. FTIR and chemometrics revealed protein conformation changes during LDL oxidation and provided a simple technique that has potential for rapidly observing structural changes in human LDL during oxidation and for measuring primary and secondary oxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ApoB-100:

apolipoprotein B-100

ATR:

attenuated total reflection

CD:

conjugated diene

2,4-DNPH:

2,4-dinitrophenylhydrazine

PLS:

partial least squares

PRESS:

prediction error sum of squares

SEC:

standard error of calibration

SEP:

standard error of prediction

References

  1. Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J.M. (1990) Secondary Structure and Dosage of Soluble and Membrane Proteins by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy on Hydrated Films, Eur. J. Biochem. 193, 409–420.

    Article  PubMed  CAS  Google Scholar 

  2. Schuh, J., Fairclough, G.F., and Haschenmeyer, R.H. (1978) Oxygen-Mediated Heterogeneity of Apo-Low-Density Lipoprotein, Proc. Natl. Acad. Sci. USA 75, 3173–3177.

    Article  PubMed  CAS  Google Scholar 

  3. Deckelbaum, R.J., Shipley, G.G., and Small, D.M. (1977) Structure and Interactions of Lipids in Human Plasma Low Density Lipoproteins, J. Biol. Chem. 252, 744–754.

    PubMed  CAS  Google Scholar 

  4. Pinchuk, I., Schnitzer, E., and Lichtenberg, D. (1998) Kinetic Analysis of Copper-Induced Peroxidation of LDL, Biochim. Biophys. Acta 1389, 155–172.

    PubMed  CAS  Google Scholar 

  5. Steinbrecher, U.P. (1987) Oxidation of Human Low Density Lipoprotein Results in Derivatization of Lysine Residues of Apolipoprotein B by Lipid Peroxide Decomposition Products, J. Biol. Chem. 262, 3603–3608.

    PubMed  CAS  Google Scholar 

  6. Puhl, H., Waeg, G., and Esterbauer, H. (1994) Methods to Determine Oxidation of Low-Density Lipoproteins, Methods Enzymol. 233, 425–452.

    Article  PubMed  CAS  Google Scholar 

  7. Esterbauer, H., Jurgens, G., Quehenberger, O., and Koller, E. (1987) Autoxidation of Human Low Density Lipoprotein: Loss of Polyunsaturated Fatty Acids and Vitamin E and Generation of Aldehydes, J. Lipid Res. 28, 495–509.

    PubMed  CAS  Google Scholar 

  8. Herzyk, E., Lee, D.C., Dunn, C., Bruckdorfer, K.R., and Chapman, D. (1987) Changes in the Secondary Structure of Apolipoprotein B-100 After Cu2+-Catalyzed Oxidation of Human Low-Density Lipoproteins Monitored by Fourier Transform Infrared Spectroscopy, Biochim. Biophys. Acta 922, 145–154.

    PubMed  CAS  Google Scholar 

  9. Goormaghtigh, E., and Ruysschaert, J.M. (1994) Subtraction of Atmospheric Water Contribution in Fourier Transform Infrared Spectroscopy of Biological Membranes and Proteins, Spectrochim. Acta 50A, 2137–2144.

    CAS  Google Scholar 

  10. Lee, D.C., Haris, P.I., Chapman, D., and Mitchell, R.C. (1990) Determination of Protein Secondary Structure Using Factor Analysis of Infrared Spectra, Biochemistry 29, 9185–9193.

    Article  PubMed  CAS  Google Scholar 

  11. Goormaghtigh, E., Cabiaux, V., De Meutter, J., Rosseneu, M., and Ruysschaert, J.-M. (1993) Secondary Structure of the Particle Associating Domain of Apolipoprotein B-100 in Low-Density Lipoprotein by Attenuated Total Reflection Infrared Spectroscopy, Biochemistry 32, 6104–6110.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, S.D. (1995) Chemical Systems Under Indirect Observation: Latent Properties and Chemometrics, Appl. Spectrosc. 49, 14A-31A.

    Article  CAS  Google Scholar 

  13. Dousseau, F., and Pezolet, M. (1990) Determination of the Secondary Structure Content of Proteins in Aqueous Solutions from Their Amide I and amide II Infrared Bands. Comparison Between Classical and Partial Least-Squares Methods, Biochemistry 29, 8771–8779.

    Article  PubMed  CAS  Google Scholar 

  14. Jurgens, G., Hoff, H.F., Chisolm, G.M., and Esterbauer, H. (1987) Modification of Human Serum Low Density Lipoprotein by Oxidation. Characterization and Pathophysiological Implications, Chem. Phys. Lipids 45, 315–336.

    Article  PubMed  CAS  Google Scholar 

  15. Lowry, O.H., Rosebrough, N., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  16. Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M. (1989) Continuous Monitoring of in vitro Oxidation of Human Low Density Lipoprotein, Free Radic. Res. Commun. 6, 67–71.

    PubMed  CAS  Google Scholar 

  17. Gieseg, S.P., and Esterbauer, H. (1994) Low Density Lipoprotein Is Saturable by Pro-oxidant Copper, FEBS Lett. 343, 188–194.

    Article  PubMed  CAS  Google Scholar 

  18. Yukawa, N., Takamura, H., and Matoba, T. (1993) Determination of Total Carbonyls Compounds in Aqueous Media, J. Am. Oil Chem. Soc. 70, 881–884.

    CAS  Google Scholar 

  19. Fringeli, U.P., and Gunthard, H.H. (1981) Infrared Membrane Spectroscopy, in Membrane Spectroscopy (Grell, E., ed.), pp. 270–332, Springer Verlag, New York.

    Google Scholar 

  20. Martens, M., and Marterns, H. (1986) Partial Least Squares Regression, in Statistical Procedures in Food Research (Piggott, J.R., ed.), pp. 293–360, Elsevier Applied Science, London.

    Google Scholar 

  21. Halaand, M.D., and Thomas, V.E. (1988) Partial Least-Squares Methods for Spectral Analyses. 2. Application to Simulated and Glass Spectral Data, Anal. Chem. 60, 1202–1208.

    Article  Google Scholar 

  22. Geladi, P., and Kowalski, R.B. (1986) An Example of 2-Block Predictive Partial Least Squares Regression with Simulated Data, Anal. Chim. Acta 185, 19–32.

    Article  CAS  Google Scholar 

  23. Lam, H.S., Proctor, A., and Meullenet, J.F. (2001) Free Fatty Acid Formation and Lipid Oxidation on Milled Rice, J. Am. Oil Chem. Soc. 78, 1271–1275.

    CAS  Google Scholar 

  24. Liu, K.-Z., Shaw, R.A., Man, A., Dembinski, T.C., and Mantsch, H.H. (2002) Reagent-Free, Simultaneous Determination of Serum Cholesterol in HDL and LDL by Infrared Spectroscopy, Clin. Chem. 48, 499–506.

    PubMed  CAS  Google Scholar 

  25. Fuller, M.P., Ritter, G.I., and Draper, C.S. (1988) Partial Least Squares Quantitative Analysis of Infrared Spectroscopic Data. Part I. Algorithm Implementation, Appl. Spectrosc. 42, 217–227.

    Article  CAS  Google Scholar 

  26. Surewicz, W.K., Mantsch, H.H., and Chapman, D. (1993) Determination of Protein Secondary Structure by Fourier Transform Infrared Spectroscopy: A Critical Assessment, Biochemistry 32, 389–394.

    Article  PubMed  CAS  Google Scholar 

  27. Chapman, D., Kamat, V.B., and levene, R.J. (1968) Infrared Spectra and the Chain Organization of Erythrocyte Membranes, Science 160, 314–316.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Proctor.

About this article

Cite this article

Lam, H.S., Proctor, A., Nvalala, J. et al. Quantitative determination of low density lipoprotein oxidation by FTIR and chemometric analysis. Lipids 39, 687–692 (2004). https://doi.org/10.1007/s11745-004-1283-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1283-6

Keywords

Navigation