Skip to main content
Log in

Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, and endophytic fungus in Quercus variabilis

  • Published:
Lipids

Abstract

Two antibacterial and xanthine oxidase inhibitory cerebrosides, one of which is chemically new, were characterized from the chloroform-methanol (1∶1) extract of Fusarium sp. IFB-121, an endophytic fungus in Quercus variabilis. By means of chemical and spectral methods [IR, electrospray ionization MS (ESI-MS), tandem ESI-MS, 1H and 13C NMR, distortionless enhancement by polarization transfer, COSY, heteronuclear multiple-quantum coherence, heteronuclear multiple-bond correlation, and 2-D nuclear Overhauser effect correlation spectroscopy], the structure of the new metabolite named fusaruside was established as (2S,2′R,3R,3′E,4E,8E,10E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8,10-sphingatrienine, and the structure of the other was identified as (2S,2′R,3R,3′E,4E,8E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. Both new and known cerebrosides, although inactive to Trichophyton rubrum and Candida albicans, showed strong antibacterial activities against Bacillus subtilis, Escherichia coli, and Pseudomonas fluorescens, with their minimum inhibitory concentrations being 3.9, 3.9, and 1.9 μg/mL, and 7.8, 3.9, and 7.8 μg/mL, respectively. Furthermore, both metabolites were inhibitory to xanthine oxidase, with the IC50 value of fusaruside being 43.8±3.6 μM and the known cerebroside being 55.5±1.8 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESI-MS:

electrospray ionization MS

ESI-MS/MS:

tandem electrospray ionization MS

HMBC:

heteronuclear multiple-bond correlation

HMQC:

heteronuclear multiple-quantum coherence

HR-ESI-MS:

high-resolution electrospray ionization MS

MIC:

minimum inhibitory concentration

NOESY:

2-D nuclear Overhauser effect correlation spectroscopy

PDA:

potato-dextrose-agar

XO:

xanthine oxidase

References

  1. Tan, R.X., and Chen, J.H. (2003) The Cerebrosides, Nat. Prod. Rep. 20, 509–534.

    Article  PubMed  CAS  Google Scholar 

  2. Liu, J.Y., Liu, C.H., Zou, W.X. Tian, X., and Tan, R.-X. (2002) Leptosphaerone, a Metabolite with a Novel Skeleton from Leptosphaeria sp. IV403, an Endophytic Fungus in Artemisia annua, Helv. Chim. Acta 85, 2664–2667.

    Article  CAS  Google Scholar 

  3. Tan, R.X., and Zou, W.X. (2001) Endophytes: A Rich Source of Functional Metabolites, Nat. Prod. Rep. 18, 448–459.

    Article  PubMed  CAS  Google Scholar 

  4. Zou, W.X., Lu, H., Meng, J.C., Chen, G.X., Zhang, T.Y., and Tan, R.X. (2000) New and Bioactive Metabolites of Colletotrichum gloeosporioides, an Endophytic Fungus in Artemisia mongolica, J. Nat. Prod. 63, 1529–1530.

    Article  PubMed  CAS  Google Scholar 

  5. Lu, H., Zou, W.X., Meng, J.C., Hu, J., and Tan, R.X. (2000) New Bioactive Metabolites Produced by Colletotrichum sp., an Endophytic Fungi in Artemisia annua, Plant Sci. 151, 67–73.

    Article  CAS  Google Scholar 

  6. Dickson, R.-C., and Lester, R.-L. (1999) Yeast Sphingolipids, Biochim. Biophys. Acta 1426, 347–357.

    PubMed  CAS  Google Scholar 

  7. Batrakov, S.G., Konova, I.V., Sheichenko, V.I., Esipov, S.E., Galanina, L.A., and Istratova, L.N. (2002) Unusual Fatty Acid Composition of Cerebrosides from the Filamentous Soil Fungus Mortierella alpina, Chem. Phys. Lipids 117, 45–51.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, J.H., Cui, G.Y., Liu, J.Y., and Tan, R.X. (2003) Pinelloside, an Antimicrobial Cerebroside from Pinellia ternate, Phytochemistry 64, 903–906.

    Article  PubMed  CAS  Google Scholar 

  9. Qi, J., Ojika, M., and Sakagami Y. (2000) Termitomycesphins A-D, Novel Neuritogenic Cerebrosides from the Edible Chinese Mushroom Termitomyces albuminosus, Tetrahedron 56, 5835–5841.

    Article  CAS  Google Scholar 

  10. Gao, J.M., Hu, L., Dong, Z.J., and Liu, J.K. (2001) New Glycosphingolipid Containing an Unusual Sphingoid Base from the Basidiomycete Polyporus ellisii, Lipids 36, 521–527.

    PubMed  CAS  Google Scholar 

  11. Kong, L.D., Abliz, Z., Zou, C.X., Li, L.J., Cheng, C.H.K., and Tan, R.X. (2001) Glycosides and Xanthine Oxidase Inhibitors from Conyzaa bonariensis, Phytochemistry 58 645–651.

    Article  PubMed  CAS  Google Scholar 

  12. Van Hoorn, D.E.C., Nijveldt, R.J., Van Leeuwen, P.A.M., Hofman, Z., M'Rabet, L., De Bont, D.B.A., and Van Norren, K. (2002) Accurrate Prediction of Xanthine Oxidase Inhibition Based on the Structure of Flavonoids, Eur. J. Pharmacol. 451, 111–118.

    Article  PubMed  Google Scholar 

  13. Toledo, M.S., Levery, S.B., Straus, A.H., Suzuki, E., Momany, M., Glushka, J., Moulton, J.M., and Takahashi H.K. (1999) Characterization of Sphingolipids from Mycopathogens: Factors Correlating with Expression of 2-Hydroxy Fatty Acyl Δ3-Unsaturation in Cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus, Biochemistry 38, 7294–7306.

    Article  PubMed  CAS  Google Scholar 

  14. Duarte, R.S., Polycarpo, C.R., Wait, R., Hartmann, R., and Bergter, E.B. (1998) Structural Characterization of Neutral Glycosphingolipids from Fusarium Species, Biochim. Biophys. Acta 1390, 186–196.

    PubMed  CAS  Google Scholar 

  15. Keusgen, M., Yu, C.-M. Curtis, J.M., Brewer, D., and Ayer, S.W. (1996) A Cerebroside from the Marine Fungus Microsphaeropsis olivacea (Bonord.) Höhn, Biochem. Syst. Ecol. 24, 465–468.

    Article  CAS  Google Scholar 

  16. Umemura, K., Ogawa, N., Yamauchi, T., Iwata, M., Shimura, M., and Koga, J. (2000) Cerebroside Elicitors Found in Diverse Phytopathogens Activate Defense Responses in Rice Plants, Plant Cell Physiol. 41, 676–683.

    PubMed  CAS  Google Scholar 

  17. Huang, Y., Dong, Z.J., and Liu, J.K. (2001) The Chemical Constituents from Basidiocarps of Sarcodon aspratum, Acta Bot. Yunnanica 23, 125–128.

    CAS  Google Scholar 

  18. Zhan, Z.J., Sun, H.D., Wu, H.M., and Yue, J.M. (2003) Chemical Components from the Fungus Engleromyces goetzei, Acta Bot. Sin. 45, 248–252.

    CAS  Google Scholar 

  19. Kong, L.D., Cai Y., Huang, W.W., Cheng, C.H.K., and Tan, R.X. (2000) Inhibition of Xanthine Oxidase by Some Chinese Medicinal Plants Used to Treat Gout, J. Ethnopharmacol. 73, 199–207.

    Article  PubMed  CAS  Google Scholar 

  20. Barrett, A.G.M., Beall, J.C., Braddock, D.C., Flack, K., Gibson, V.C., and Salter, M.M. (2000) Asymmetric Allylboration and Ring Closing Alkene Metathesis: A Novel Strategy for the Synthesis of Glycosphingolipids, J. Org. Chem. 65, 6508–6514.

    Article  PubMed  CAS  Google Scholar 

  21. Tan, J.W., Dong, Z.J., and Liu, J.K. (2003) New Cerebrosides from the Basidiomycete Cortinarius tenuipes, Lipids 38, 81–84.

    PubMed  CAS  Google Scholar 

  22. Boas, M.H.S.V., Egge, H., Pohlentz, G., Hartmann, R., and Bergter, E.B. (1994) Structural Determination of N-2′-Hydroxyoctadecenoyl-1-O-β-d-glucopyranosyl-9-methyl-4,8-sphingadienine from Species of Aspergillus, Chem. Phys. Lipids 70, 11–19.

    Article  PubMed  CAS  Google Scholar 

  23. Kawai, G. (1989) Molecular Species of Cerebrosides in Fruiting Bodies of Lentimus edodes and Their Biological Activity, Biochim. Biophys. Acta 1001, 185–190.

    PubMed  CAS  Google Scholar 

  24. Sitrin, R.D., Chan, G., Dinger-dissen, J., DeBrosse, C., Mehta, R., Roberts, G., Rottschaefer, S., Staiger, D., Valenta, J., Snader, K.M., et al. (1988) Isolation and Structure Determination of Pachybasium Cerebrosides Which Potentiate the Antifungal Activity of Aculeacin, J. Antibiot. 41, 469–480.

    PubMed  CAS  Google Scholar 

  25. Nishida, F., Mori, Y., Rokkaku, N., Isobe, S., Furuse, T., Suzuki, M., Meevootisom, V., Flegel, T.W., Thebtaranonth, Y., and Intararuangsorn, S. (1990) Structure Elucidation of Glycosidic Antibiotics Glykenins from Basidiomycetes sp. II. Absolute Structures of Unusual Polyhydroxylated C26-Fatty Acids, Aglycones of Glykenins, Chem. Pharm. Bull. 38, 2381–2389.

    CAS  Google Scholar 

  26. Nishida, F., Mori Y., Sonobe, C., and Suzuki, M. (1991) Structure Elucidation of Glycosidic Glykenins from Basidomycetes sp. III. J. Antibiot. 44, 541–545.

    PubMed  CAS  Google Scholar 

  27. da Silva, A.F.C., Rodrigues, M.L., Farias, S.E., Almeida, I.C., Pinto M.R., and Barreto-Bergter, E. (2004) Glucosylceramides in Colletotrichum gloeosporioides Are Involved in the Differentiation of Conidia into Mycelial Cells, FEBS Lett. 561, 137–143.

    Article  PubMed  Google Scholar 

  28. Weiss, B., Stiller, R.L., and Jack, P.C. (1973) Sphingolipids of the Fungi Phycomycetes blakesleeanus and Fusarium lini, Lipids 8, 25–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. X. Tan.

About this article

Cite this article

Shu, R.G., Wang, F.W., Yang, Y.M. et al. Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, and endophytic fungus in Quercus variabilis . Lipids 39, 667–673 (2004). https://doi.org/10.1007/s11745-004-1280-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1280-9

Keywords

Navigation