Skip to main content
Log in

β-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated atlantic salmon skeletal muscle cells

  • Articles
  • Published:
Lipids

Abstract

The white muscle of Atlantic salmon metabolizes FA with different chain lengths and different saturations at different rates, but few details are available on the processes involved or the products formed. We have investigated how multinucleated muscle cells (myotubes) in culture metabolize [1-14C]8∶0, [1-14C]18∶1n−9, and [1-14C]20∶5n−3. The myotubes were formed by the differentiation of isolated myosatellite cells from the white skeletal muscle of salmon fry. Almost all (98%) of the [1-14C]8∶0 substrate was oxidized to acid-soluble products (ASP) and 14CO2 after 48 h of incubation, whereas only approximately 50% of the [1-14C]18∶1n−9 and [1-14C]20∶5n−3 substrates were oxidized. However, only one cycle of β-oxidation was measured by the method used. For all three substrates, the main ASP were acetate and a combined fraction of oxaloacetate and malate. Nearly twice as much radioactivity from the [1-14C]20∶5n−3 substrate was found in the cellular lipids as radioactivity from [1-14C]18∶1n−9, indicating that [1-14C]20∶5n−3 was taken up into muscle cells more rapidly than [1-14C]18∶1n−9. Approximately 10% of the added [1-14C]20∶5n−3 substrate and 5% of the added [1-14C]18∶1n−9 substrate was secreted from the muscle cells into the culture media as esterified lipids. Immunocytochemical staining showed that the cells synthesized apolipoprotein A-I. Differentiated muscle cells also expressed peroxisome proliferator-activated receptor α (PPARα) and PPARβ, two transcription factors that are involved in regulating β-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEC:

3-amino-9-ethylcarbazole

apoA-I:

apolipoprotein A-I

ASP:

acid-soluble product

BHB:

β-hydroxybutyrate

HRP:

horseradish peroxidase

LCFA:

long-chain FA

MCFA:

medium-chain FA

MDG:

monoand diacylglycerols

MLC2:

myosin light-chain 2

NEFA:

nonesterified fatty acid

ox-mal:

oxaloacetate and malate

PBS-T:

PBS with 0.05% Tween

PCNA:

proliferating cell nuclear antigen

PL:

phospholipid

PPAR:

peroxisome proliferator-activated receptor

PVDF:

polyvinylidene difluoride

RTPCR:

reverse-transcriptase polymerase chain reaction

TCA:

tricarboxylic acid

References

  1. Bilinski, E. (1963) Utilization of Lipids by Fish. I. Fatty Acid Oxidation by Tissue Slices from Dark and White Muscle of Rainbow Trout (Salmo gairdnerii), Can. J. Biochem. Physiol. 41, 107–112.

    PubMed  CAS  Google Scholar 

  2. Frøyland, L., Madsen, L., Eckhoff, K.M., Lie, Ø., and Berge, R. (1998) Carnitine Palmitoyltransferase I, Carnitine Palmitoyltransferase II, and Acyl-CoA Oxidase Activities in Atlantic Salmon (Salmo salar), Lipids 33, 923–930.

    Article  PubMed  Google Scholar 

  3. Richards, J.G., Heigenhauser, G.J.F., and Wood, C.M. (2002) Lipid Oxidation Fuels Recovery from Exhaustive Exercise in White Muscle of Rainbow Trout, Am. J. Physiol. 282, R89-R99.

    CAS  Google Scholar 

  4. Zhou, S., Ackman, R., and Morrison, C. (1995) Storage of Lipids in the Myocepta of Atlantic Salmon (Salmo salar), Fish Physiol. Biochem. 14, 171–178.

    Article  CAS  Google Scholar 

  5. Frøyland, L., Lie, Ø., and Berge, R. (2000) Mitocondrial and Peroxisomal β-Oxidation Capacities in Various Tissues from Atlantic Salmon (Salmo salar), Aquacult. Nutr. 6, 85–89.

    Article  Google Scholar 

  6. Torstensen, B.E., Lie, Ø., and Frøyland, L. (2000) Lipid Metabolism and Tissue Composition in Atlantic Salmon (Salmo salar L.)—Effects of Capelin Oil, Palm Oil, and Oleic Acid-Enriched Sunflower Oil as Dietary Lipid Sources, Lipids 35, 653–664.

    Article  PubMed  CAS  Google Scholar 

  7. Hamre, K., and Lie, Ø. (1995) α-Tocopherol Levels in Different Organs of Atlantic Salmon (Salmo salar)—Effect of Smoltification, Dietary Levels of n−3 Polyunsaturated Fatty Acids and Vitamin E, Comp. Biochem. Physiol. 111A, 547–554.

    Article  CAS  Google Scholar 

  8. Ruyter, B., and Thomassen, M.S. (1999) Metabolism of n−3 and n−6 Fatty Acids in Atlantic Salmon Liver: Stimulation by Essential Fatty Acid Deficiency, Lipids 34, 1167–1176.

    Article  PubMed  CAS  Google Scholar 

  9. Ruyter, B., Røsjø, C., Grisdal-Helland, B., Rosenlund, G., Obach, A., and Thomassen, M.S. (2003) Influence of Temperature and High Dietary Linoleic Acid Content on Esterification, Elongation, and Desaturation of PUFA in Atlantic Salmon Hepatocytes, Lipids 38, 833–840.

    PubMed  CAS  Google Scholar 

  10. Papamandjaris, A.A., MacDougall D.E., and Jones, P.J.H. (1998) Medium Chain Fatty Acid Metabolism and Energy Expenditure: Obesity Treatment Implications Life Sci. 14, 1203–1215.

    Article  Google Scholar 

  11. Tran, T.N., and Christophersen, B.O. (2001) Studies on the Transport of Acetyl Groups from Peroxisomes to Mitochondria in Isolated Liver Cells Oxidizing the Polyunsaturated Fatty Acid 22∶4n−6, Biochim. Biophys. Acta 1533, 255–265.

    PubMed  CAS  Google Scholar 

  12. Tran, T.N., and Christophersen, B.O. (2002) Partitioning of Polyunsaturated Fatty Acid Oxidation Between Mitochondria and Peroxisomes in Isolated Rat Hepatocytes Studied by HPLC Separation of Oxidation Products, Biochim. Biophys. Acta 1583, 195–204.

    PubMed  CAS  Google Scholar 

  13. Crockett, E.L., and Sidell, B.D. (1993a) Substrate Selectivities Differ for Hepatic Mitochondrial and Peroxisomal β-Oxidation in an Antarctic Fish, Notothenia gibberifrons, Biochem. J. 289, 427–433.

    PubMed  CAS  Google Scholar 

  14. Crockett, E.L., and Sidell, B.D. (1993b) Peroxisomal β-Oxidation Is a Significant Pathway for Catabolism of Fatty Acids in a Marine Teleost, Am. J. Physiol. 264, R1004-R1009.

    PubMed  CAS  Google Scholar 

  15. Leighton, F., Bergseth, S., Rørtveit, T., Christiansen, E.N., and Bremer, J. (1989) Free Acetate Production by Rat Hepatocytes During Peroxisomal Fatty Acid and Dicarboxylic Acid Oxidation, J. Biol. Chem. 264, 10347–10350.

    PubMed  CAS  Google Scholar 

  16. Luzzana, U., Serrini, G., Moretti, V.M., Gianesini, C., and Valfre, F. (1994) Effect of Expanded Feed with High Fish Oil Content on Growth and Fatty Acid Composition of Rainbow Trout, Aquacult. Int. 2, 239–248.

    Google Scholar 

  17. Weatherup, R.N., McCracken, K.J., Foy, R., Rice, D., McKendry, J., Mairs, R.J., and Hoey, R. (1997) The Effects of Dietary Fat Content on Performance and Body Composition of Farmed Rainbow Trout (Oncorhynchus mykiss), Aquaculture 151, 173–184.

    Article  CAS  Google Scholar 

  18. Bell, J.G., McEvoy, J., Webster, J.L., McGhee, F., Millar, R.M., and Sargent, J.R. (1998) Flesh Lipid and Carotenoid Composition of Scottish Farmed Atlantic Salmon (Salmo salar), J. Agric. Food Chem. 46, 119–127.

    Article  PubMed  CAS  Google Scholar 

  19. Hemre, G.-I., and Sandnes, K. (1999) Effect of Dietary Lipid Level on Muscle Composition in Atlantic Salmon (Salmo salar), Aquacult. Nutr. 5, 9–16.

    Article  CAS  Google Scholar 

  20. Torstensen, B.E., Lie, Ø., and Hamre, K. (2001) A Factorial Experimental Design for Investigation of Effects of Dietary Lipid Content and Pro- and Antioxidants on Lipid Composition in Atlantic Salmon (Salmo salar) Tissues and Lipoproteins, Aquacult. Nutr. 7, 265–276.

    Article  CAS  Google Scholar 

  21. Sargent, J.R., Tocher, D.R., and Bell, J.G. (2002) The Lipids, in Fish Nutrition, 3rd edn. (Halver, J.E., ed.), pp. 181–257, Academic Press, San Diego.

    Google Scholar 

  22. Göttlicher, M., Widmark, E., Li, Q., and Gustafsson, J.A. (1992) Fatty Acids Activate a Chimera of the Clofibric Acid Activated Receptor and the Rlucocorticoid Receptor, Proc. Natl. Acad. Sci. USA 89, 4653–4657.

    Article  PubMed  Google Scholar 

  23. Ruyter, B., Andersen, Ø., Dehli, A., Östlund Farrants, A.-K., Gjøen, T., and Thomassen, M.S. (1997) Peroxisome Proliferator Activated Receptors in Atlantic Salmon (Salmo salar): Effects on PPAR Transcription and Acyl-CoA Oxidase Activity in Hepatocytes by Peroxisome Proliferators and Fatty Acids, Biochim. Biophys. Acta 1348, 331–338.

    PubMed  CAS  Google Scholar 

  24. Andersen, Ø., Eijsink, V.G., and Thomassen, M. (2000) Multiple Variants of the Peroxisome Proliferator-Activated Receptor (PPAR) γ Are Expressed in the Liver of Atlantic Salmon (Salmo salar), Gene 255, 411–418.

    Article  PubMed  CAS  Google Scholar 

  25. Vegusdal, A., Sundvold, H., Gjøen, T., and Ruyter, B. (2003) An in vitro Method for Studying the Proliferation and Differentiation of Atlantic Salmon Preadipocytes, Lipids 38, 289–296.

    PubMed  CAS  Google Scholar 

  26. Leaver, M.J., Wright, J., and George, S.G. (1998) A Peroxisome Proliferator-Activated Receptor Gene from the Marine Flatfish, The Plaice (Pleuronectes platessa), Mar. Environ. Res. 46, 75–79.

    Article  CAS  Google Scholar 

  27. Maglich, J.M., Caravella, J.A., Lambert, M.H., Willson, T.M., Moore, J.T., and Ramamurthy, L. (2003) The First Completed Genome Sequence from a Teleost Fish (Fugu rubripes) Adds significant Diversity to the Nuclear Receptor Superfamily, Nucleic Acids Res. 31, 4051–4058.

    Article  PubMed  CAS  Google Scholar 

  28. Schoonjans, K., Staels, B., and Auwerx, J. (1996) The Peroxisome Prolifeator-Activated Receptors (PPARs) and Their Effects on Lipid Metabolism and Adipocyte Differentiation, Biochim. Biophys. Acta 1302, 93–109.

    PubMed  CAS  Google Scholar 

  29. Muoio, D.M., MacLean, P.S., Lang, D.B., Li, S., Houmard, J.A., Way, J.M., Winegar, D.A., Corton, J.C., Dohm, G.L., and Kraus, W.E. (2002) Fatty Acid Homeostasis and Induction of Lipid Regulatory Genes in Skeletal Muscles of Peroxisome Proliferator-Activated Receptor (PPAR) α Knock-Out Mice. Evidence for Compensatory Regulation by PPAR δ, J. Biol. Chem. 277, 26089–26097.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, Y.-X., Lee, C.-H., Tiep, S., Yu, R.T., Ham, J., Kang, H., and Evans, R.M. (2003) Peroxisome Proliferator-Activated Receptor δ Activates Fat Metabolism to Prevent Obesity, Cell 113, 159–170.

    Article  PubMed  CAS  Google Scholar 

  31. Matchak, T.W., and Stickland, N.C. (1995) The Growth of Atlantic Salmon (Salmo salar L.) Myosatellite Cells in Culture at Two Different Temperatures, Experientia 51, 260–266.

    Article  Google Scholar 

  32. Koumans, J.T.M., Akster, H.A., Dulos, G.J., and Osse, J.W.M. (1990) Myosatellite Cells of Cyprinus carpio (Teleostei) in vitro: Isolation, Recognition and Differentiation, Cell Tissue Res. 261, 173–181.

    Article  Google Scholar 

  33. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  34. Dannevig, B.H., Falk, K., and Press, C.M. (1995) Propagation of Infectious Salmon Anaemia (ISA) Virus in Cell Culture, Vet. Res. 26, 438–442.

    PubMed  CAS  Google Scholar 

  35. Livak, K.J., and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-DDC T Method, Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  36. Folch, A.C., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  37. Mason, M.E., and Waller, G.R. (1964) Dimethoxypropane Induces Transesterification of Fats and Oils in Preparation of Methylesters for Gas Chromatographic Analysis, Anal. Chem. 36, 583.

    Article  CAS  Google Scholar 

  38. Christiansen, R., Borrebaeck, B., and Bremer, J. (1976) The Effect of (−)Carnitine on the Metabolism of Palmitate in Liver Cells Isolated from Fasted and Refed Rats, FEBS Lett. 62, 313–317.

    Article  PubMed  CAS  Google Scholar 

  39. Østbye, T.-K., Galloway, T.F., Nielsen, C., Gabestad, I., Bardal, T., and Andresen, Ø. (2001) The Two Myostatin Genes of Atlantic Salmon (Salmo salar) Are Expressed in a Variety of Tissues, Eur. J. Biochem. 268, 5249–5257.

    Article  PubMed  Google Scholar 

  40. Valente, L.M.P., Paboeuf, G., and Fauconneau, B. (2002) Effect of Genetic Origin of the Fish on in vitro Proliferation of Muscle Myosatellite Cells of Rainbow Trout, J. Fish Biol. 61, 594–605.

    Article  Google Scholar 

  41. Moyes, C.D., Schulte, P.M., and Hochachka, P.W. (1992) Recovery Metabolism of Trout White Muscle: Role of Mitochondria, Am. J. Physiol. 262, R295-R304.

    PubMed  CAS  Google Scholar 

  42. Soengas, J.L., Strong, E.F., Fuentes, J., Veira, J.A.R., and Andrés, M.D. (1996) Food Deprivation and Refeeding in Atlantic Salmon, Salmo salar: Effects on Brain and Liver Carbohydrate and Ketone Bodies Metabolism, Fish Physiol. Biochem. 15, 491–511.

    Article  CAS  Google Scholar 

  43. Lin, X., Adams, S.H., and Odle, J. (1996) Acetate Represent a Major Product of Heptanoate and Octanoate β-Oxidation in Hepatocytes isolated from Neonatal Piglets, Biochem. J. 318, 235–240.

    PubMed  CAS  Google Scholar 

  44. Adams, S.H., Lin, X., Yu, X.X., Odla, J., and Drackley, J.K. (1997) Hepatic Fatty Acid Metabolism in Pigs and Rats: Major Differences in End Products, O2 Uptake and β-Oxidation, Am. J. Physiol. 272, R1641-R1646.

    PubMed  CAS  Google Scholar 

  45. Hagve, T.-A., Christophersen, B.O., and Dannevig, B.H. (1986) Desaturation and Chain Elongation of Essential Fatty Acids in Isolated Liver Cells from Rat and Rainbow Trout, Lipids 21, 202–205.

    PubMed  CAS  Google Scholar 

  46. Grisdale-Helland, B., Ruyter, B., Rosenlund, G., Obach, A., Helland, S.J., Sandberg, M.G., Standal, H., and Røsjø, C. (2002) Influence of High Contents of Dietary Soybean Oil on Growth, Feed Utilization, Tissue Fatty Acid Composition, Heart Histology and Standard Oxygen Consumption of Atlantic Salmon (Salmo salar) Raised at Two Temperatures, Aquaculture 207, 311–329.

    Article  CAS  Google Scholar 

  47. Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen, R.P., and Sargent, J.R. (2002) Substituting Fish Oil with Crude Palm Oil in the Diet of Atlantic Salmon (Salmo salar) Affects Muscle Fatty Acid Composition and Hepatic Fatty Acid Metabolism, J. Nutr. 132, 222–230.

    PubMed  CAS  Google Scholar 

  48. Tarugi, P., Reggiani, D., Ottaviani, E., Ferari, S., Tiozzo, R., and Calandra, S. (1989) Plasma Lipoproteins, Tissue Cholesterol Overload, and Skeletal Muscle Apolipoprotein A-I Synthesis in the Developing Chick, J. Lipid Res. 30, 9–22.

    PubMed  CAS  Google Scholar 

  49. Babin, P.J., and Vernier, J.-M. (1989) Plasma Lipoproteins in Fish, J. Lipid Res. 30, 467–489.

    PubMed  CAS  Google Scholar 

  50. Nelson, G.J., and Shore, V.G. (1974) Characterization of the Serum High Density Lipoproteins of Pink Salmon, J. Biol. Chem. 249, 536–542.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vegusdal.

About this article

Cite this article

Vegusdal, A., Østbye, T.K., Tran, T.N. et al. β-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated atlantic salmon skeletal muscle cells. Lipids 39, 649–658 (2004). https://doi.org/10.1007/s11745-004-1278-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1278-3

Keywords

Navigation