, Volume 39, Issue 4, pp 293–309 | Cite as

Isoprenoids: Remarkable diversity of form and function

  • Sarah A. Holstein
  • Raymond J. Hohl


The isoprenoid biosynthetic pathway is the source of a wide array of products. The pathway has been highly conserved throughout evolution, and isoprenoids are some of the most ancient biomolecules ever identified, playing key roles in many life forms. In this review we focus on C-10 mono-, C-15 sesqui-, and C-20 diterpenes. Evidence for interconversion between the pathway intermediates farnesyl pyrophosphate and geranylgeranly pyrophosphate and their respective metabolites is examined. The diverse functions of these molecules are discussed in detail, including their ability to regulate expression of the β-HMG-CoA reductase and Ras-related proteins. Additional topics include the mechanisms underlying the apoptotic effects of select isoprenoids, antiulcer activities, and the disposition and degradation of isoprenoids in the environment. Finally, the significance of pharmacological manipulation of the isoprenoid pathway and clinical correlations are discussed.


Lovastatin Monoterpene Farnesol Isoprenoid Biosynthesis Mevalonate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





dimethylallyl pyrophosphate


deoxy-d-xylulose 5-phosphate


deoxyxylulose 5-phosphate synthase




farnesyl pyrophosphate


farnesyl pyrophosphatase


farnesyl protein transferase


farnesoid X receptor






geranylgeranyl pyrophosphate


geranylgeranyl protein transferase




geranyl pyrophosphate


hyper-IgD and periodic fever syndrome


HMG-CoA reductase


isoprenyl diphosphate synthases


isopentenyl pyrophosphate


juvenile hormone


liver X receptor


mevalonic aciduria


mevalonate kinase


protein kinase C


peroxisome proliferator-activated receptor


retinoic acid receptor


reactive oxygen species


retinoid X receptor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sacchettini, J.C., and Poulter, C.D. (1997) Creating Isoprenoid Diversity, Science 277, 1788–1789.PubMedCrossRefGoogle Scholar
  2. 2.
    Summouns, R.E., Jahnke, L.L., Hope, J.M., and Logan, G.A. (1999) 2-Methylhopanoids as Biomarkers for Cyanobacterial Oxygenic Photosynthesis, Nature 400, 554–557.CrossRefGoogle Scholar
  3. 3.
    Ferguson, J.J., Durr, I.F., and Rudney, H. (1959) The Biosynthesis of Mevalonic Acid, Proc. Nat. Acad. Sci. USA 45, 499–504.PubMedCrossRefGoogle Scholar
  4. 4.
    Tchen, T.T. (1958) Mevalonic Kinase: Purification and Properties, J. Biol. Chem. 233, 1100–1103.PubMedGoogle Scholar
  5. 5.
    Tada, M., and Lynen, F. (1961) On the Biosynthesis of Terpenes. XIV. On the Determination of Phosphomevalonic Acid Kinase and Pyrophosphomevalonic Acid Decarboxylase in Cell Extracts, J. Biochem. 49, 758–764.PubMedGoogle Scholar
  6. 6.
    Agranoff, B.W., Eggerer, H., Henning, U., and Lynen, F. (1960) Biosynthesis of Terpenes. VII. Isopentenyl Pyrophosphate Isomerase, J. Biol. Chem. 235, 326–332.PubMedGoogle Scholar
  7. 7.
    Milstone, D.S., Vold, B.S., Glitz, D.G., and Shutt, N. (1978) Antibodies to N6-(Δ2-isopentenyl) Adenosine and Its Nucleotide: Interaction with Purified tRNAs and with Bases, Nucleosides and Nucleotides of the Isopentenyladenosine Family, Nucleic Acids Res. 5, 3439–3455.PubMedGoogle Scholar
  8. 8.
    Taya, Y., Tanaka, Y., and Nishimura, S. (1978) 5′-AMP Is a Direct Precursor of Cytokinin in Dictyostelium discoideum, Nature 271, 545–547.PubMedCrossRefGoogle Scholar
  9. 9.
    Poulter, C.D., and Rilling, H.C. (1978) The Prenyl Transfer Reaction: Enzymic and Mechanistic Studies on the 1′-4 Coupling Reaction in the Terpene Biosynthetic Pathway, Acc. Chem. Res. 11, 307–313.CrossRefGoogle Scholar
  10. 10.
    Croteau, R., and Purkett, P.T. (1989) Geranyl Pyrophosphate Synthase: Characterization of the Enzyme and Evidence That This Chain-Length-Specific Prenyltransferase Is Associated with Monoterpene Biosynthesis in Sage (Salvia officinalis), Arch. Biochem. Biophys. 271, 524–535.PubMedCrossRefGoogle Scholar
  11. 11.
    Beytia, E., Qureshi, A.A., and Porter, J.W. (1973) Squalene Synthetase. 3. Mechanism of the Reaction, J. Biol. Chem. 248, 1856–1867.PubMedGoogle Scholar
  12. 12.
    Koyama, T., Matsubara, M., and Ogura, K. (1985) Isoprenoid Enzyme Systems of Silkworm. II. Formation of the Juvenile Hormone Skeletons by Farnesyl Pyrophosphate Synthetase II, J. Biochem. 98 (Tokyo), 457–463.PubMedGoogle Scholar
  13. 13.
    Kandutsch, A.A., Paulus, H., Levin, E., and Bloch, K. (1964) Purification of Geranylgeranyl Pyrophosphate Synthetase from Micrococcus lysodeikticus, J. Biol. Chem. 239, 2507–2515.PubMedGoogle Scholar
  14. 14.
    Reiss, Y., Goldstein, J.L., Seabra, M.C., Casey, P.J., and Brown, M.S. (1990) Inhibition of Purified p21ras Farnesyl:Protein Transferase by Cys-AAX Tetrapeptides, Cell 62, 81–88.PubMedCrossRefGoogle Scholar
  15. 15.
    Moomaw, J.F., and Casey, P.J. (1992) Mammalian Protein Geranylgeranyltransferase. Subunit Composition and Metal Requirements, J. Biol. Chem. 267, 17438–17443.PubMedGoogle Scholar
  16. 16.
    Yokoyama, K., and Gelb, M.H. (1993) Purification of a Mammalian Protein Geranylgeranyltransferase. Formation and Catalytic Properties of an Enzyme-Geranylgeranyl Pyrophosphate Complex, J. Biol. Chem. 268, 4055–4060.PubMedGoogle Scholar
  17. 17.
    Armstrong, S.A., Seabra, M.C., Sudhof, T.C., Goldstein, J.L., and Brown, M.S. (1993) cDNA Cloning and Expression of the Alpha and Beta Subunits of Rat Rab Geranylgeranyl Transferase, J. Biol. Chem. 268, 12221–12229.PubMedGoogle Scholar
  18. 18.
    Wang, K.C., and Ohnuma, S. (2000) Isoprenyl Diphosphate Synthases, Biochim. Biophys. Acta 1529, 33–48.PubMedGoogle Scholar
  19. 19.
    Teclebrhan, H., Olsson, J., Swiezewska, E., and Dallner, G. (1993) Biosynthesis of the Side Chain of Ubiquinone: trans-Prenyltransferase in Rat Liver Microsomes, J. Biol. Chem. 268, 23081–23086.PubMedGoogle Scholar
  20. 20.
    Matsuoka, S., Sagami, H., Kurisaki, A., and Ogura, K. (1991) Variable Product Specificity of Microsomal Dehydrodolichyl Diphosphate Synthase from Rat Liver, J. Biol. Chem. 266, 3464–3468.PubMedGoogle Scholar
  21. 21.
    Ibata, K., Mizuno, M., Takigawa, T., and Tanaka, Y. (1983) Long-Chain Betulaprenol-Type Polyprenols from the Leaves of Ginkgo biloba, Biochem. J. 213, 305–311.PubMedGoogle Scholar
  22. 22.
    Fujisaki, S., Hara, H., Nishimura, Y., Horiuchi, K., and Nishino, T. (1990) Cloning and Nucleotide Sequence of the ispA Gene Responsible for Farnesyl Diphosphate Synthase Activity in Escherichia coli, J. Biochem. (Tokyo) 108, 995–1000.Google Scholar
  23. 23.
    Apfel, C.M., Takacs, B., Fountoulakis, M., Stieger, M., and Keck, W. (1999) Use of Genomics to Identify Bacterial Undecaprenyl Pyrophosphate Synthetase: Cloning, Expression, and Characterization of the Essential uppS Gene, J. Bacteriol. 181, 483–492.PubMedGoogle Scholar
  24. 24.
    Ogura, K., Koyama, T., and Sagami, H. (1997) Polyprenyl Diphosphate Synthases, Subcell. Biochem. 28, 57–87.PubMedGoogle Scholar
  25. 25.
    Kuntz, M., Romer, S., Suire, C., Hugueney, P., Weil, J.H., Schantz, R., and Camara, B. (1992) Identification of a cDNA for the Plastid-Located Geranylgeranyl Pyrophosphate Synthase from Capsicum annuum: Correlative Increase in Enzyme Activity and Transcript Level During Fruit Ripening, Plant J. 2, 25–34.PubMedGoogle Scholar
  26. 26.
    Sprenger, G.A., Schorken, U., Wiegert, T., Grolle, S., de Graaf, A.A., Taylor, S.V., Begley, T.P., Bringer-Meyer, S., and Sahm, H. (1997) Identification of a Thiamin-Dependent Synthase in Escherichia coli Required for the Formation of the 1-Deoxy-d-xylulose 5-phosphate Precursor to Isoprenoids, Thiamin, and Pyridoxol, Proc. Nat. Acad. Sci. USA 94, 12857–12862.PubMedCrossRefGoogle Scholar
  27. 27.
    Lange, B.M., Wildung, M.R., McCaskill, D., and Croteau, R. (1998) A Family of Transketolases That Directs Isoprenoid Biosynthesis via a Mevalonate-Independent Pathway, Proc. Nat. Acad. Sci. USA 95, 2100–2104.PubMedCrossRefGoogle Scholar
  28. 28.
    Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., and Bacher, A. (1998) The Deoxyxylulose Phosphate Pathway of Terpenoid Biosynthesis in Plants and Microorganisms, Chem. Biol. 5, R221-R233.PubMedCrossRefGoogle Scholar
  29. 29.
    Flesch, G., and Rohmer, M. (1988) Prokaryotic Hopanoids: The Biosynthesis of the Bacteriohopane Skeleton. Formation of Isoprenic Units from Two Distinct Acetate Pools and a Novel Type of Carbon/Carbon Linkage Between a Triterpene and d-Ribose, Eur. J. Biochem. 175, 405–411.PubMedCrossRefGoogle Scholar
  30. 30.
    Lange, B.M., and Croteau, R. (1999) Isopentenyl Diphosphate Biosynthesis via a Mevalonate-Independent Pathway: Isopentenyl Monophosphate Kinase Catalyzes the Terminal Enzymatic Step, Proc. Nat. Acad. Sci. USA 96, 13714–13719.PubMedCrossRefGoogle Scholar
  31. 31.
    Lichtenthaler, H.K., Rohmer, M., and Schwender, J. (1997) Two Independent Biochemical Pathways for Isopentenyl Diphosphate and Isoprenoid Biosynthesis in Higher Plants, Physiol. Plant. 101, 643–652.CrossRefGoogle Scholar
  32. 32.
    Lange, B.M., Rujan, T., Martin, W., and Croteau, R. (2000) Isoprenoid Biosynthesis: The Evolution of Two Ancient and Distinct Pathways Across Genomes, Proc. Nat. Acad. Sci. USA 97, 13172–13177.PubMedCrossRefGoogle Scholar
  33. 33.
    Boucher, Y., and Doolittle, W.F. (2000) The Role of Lateral Gene Transfer in the Evolution of Isoprenoid Biosynthesis Pathways, Mol. Microbiol. 37, 703–716.PubMedCrossRefGoogle Scholar
  34. 34.
    Flesch, G., and Rohmer, M. (1989) Prokaryotic Triterpenoids. A Novel Hopanoid from the Ethanol-Producing Bacterium Zymomonas mobilis, Biochem. J. 262, 673–675.PubMedGoogle Scholar
  35. 35.
    Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993) Isoprenoid Biosynthesis in Bacteria: A Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate, Biochem. J. 295, 517–524.PubMedGoogle Scholar
  36. 36.
    Putra, S.R., Disch, A., Bravo, J.M., and Rohmer, M. (1998) Distribution of Mevalonate and Glyceraldehyde 3-Phosphate/Pyruvate Routes for Isoprenoid Biosynthesis in Some Gram-Negative Bacteria and Mycobacteria, FEMS Microbiol. Lett. 164, 169–175.PubMedCrossRefGoogle Scholar
  37. 37.
    Knöss, W., Reuter, B., and Zapp, J. (1997) Biosynthesis of the Labdane Diterpene Marrubiin in Marrubium vulgare via a Non-mevalonate Pathway, Biochem. J. 326, 449–454.PubMedGoogle Scholar
  38. 38.
    Schwender, J., Seemann, M., Lichtenthaler, H.K., and Rohmer, M. (1996) Biosynthesis of Isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a Novel Pyruvate/Glyceraldehyde 3-Phosphate Non-mevalonate Pathway in the Green Alga Scenedesmus obliquus, Biochem. J. 316, 73–80.PubMedGoogle Scholar
  39. 39.
    Disch, A., and Rohmer, M. (1998) On the Absence of the Glyceraldehyde 3-Phosphate/Pyruvate Pathway for Isoprenoid Biosynthesis in Fungi and Yeasts, FEMS Microbiol. Lett. 168, 201–208.PubMedCrossRefGoogle Scholar
  40. 40.
    Mahmoud, S.S., and Croteau, R.B. (2002) Strategies for Transgenic Manipulation of Monoterpene Biosynthesis in Plants, Trends Plant Sci. 7, 366–373.PubMedCrossRefGoogle Scholar
  41. 41.
    Porter, J.W., and Spurgeon, S.L. (1981) Biosynthesis of Isoprenoid Compounds, Vol. 1, John Wiley & Sons, New York.Google Scholar
  42. 42.
    Harrewijn, P., van Oosten, A.M., and Piron, P.G.M. (2001) Natural Terpenoids as Messengers: A Multidisciplinary Study of Their Production, Biological Functions and Practical Applications, pp. 1–9, Kluwer Academic, Dordrecht.Google Scholar
  43. 43.
    Crowell, P.L. (1999) Prevention and Therapy of Cancer by Dietary Monoterpenes, J. Nutr. 129, 775S-778S.PubMedGoogle Scholar
  44. 44.
    Gould, M.N., Moore, C.J., Zhang, R., Wang, B., Kennan, W.S., and Haag, J.D. (1994) Limonene Chemoprevention of Mammary Carcinoma Induction Following Direct in situ Transfer of v-Ha-ras, Cancer Res. 54, 3540–3543.PubMedGoogle Scholar
  45. 45.
    Elegbede, J.A., Elson, C.E., Tanner, M.A., Qureshi, A., and Gould, M.N. (1986) Regression of Rat Primary Mammary Tumors Following Dietary d-Limonene, J. Natl. Cancer Inst. 76, 323–325.PubMedGoogle Scholar
  46. 46.
    Haag, J.D., and Gould, M.N. (1994) Mammary Carcinoma Regression Induced by Perillyl Alcohol, a Hydroxylated Analog of Limonene, Cancer Chemother. Pharmacol. 34, 477–483.PubMedGoogle Scholar
  47. 47.
    Stark, M.J., Burke, Y.D., McKinzie, J.H., Ayoubi, A.S., and Crowell, P.L. (1995) Chemotherapy of Pancreatic Cancer with the Monoterpene Perillyl Alcohol, Cancer Lett. 96, 15–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Elegbede, J.A., Flores, R., and Wang, R.C. (2003) Perillyl Alcohol and Perillaldehyde Induced Cell Cycle Arrest and Cell Death in Bro To and A549 Cells Cultured in vitro, Life Sci. 73, 2831–2840.PubMedCrossRefGoogle Scholar
  49. 49.
    Ahn, K.J., Lee, C.K., Choi, E.K., Griffin, R., Song, C.W., and Park, H.J. (2003) Cytotoxicity of Perillyl Alcohol Against Cancer Cells Is Potentiated by Hyperthermia, Int. J. Radiat. Oncol. Biol. Phys. 57, 813–819.PubMedCrossRefGoogle Scholar
  50. 50.
    Unlu, S., Mason, C.D., Schachter, M., and Hughes, A.D. (2000) Perillyl Alcohol, an Inhibitor of Geranylgeranyl Transferase, Induces Apoptosis of Immortalized Human Vascular Smooth Muscle Cells in vitro, J. Cardiovasc. Pharmacol. 35, 341–344.PubMedCrossRefGoogle Scholar
  51. 51.
    Sahin, M.B., Perman, S.M., Jenkins, G., and Clark, S.S. (1999) Perillyl Alcohol Selectively Induces G0/G1 Arrest and Apoptosis in Bcr/Abl-Transformed Myeloid Cell Lines, Leukemia. 13, 1581–1591.PubMedCrossRefGoogle Scholar
  52. 52.
    Ripple, G.H., Gould, M.N., Stewart, J.A., Tutsch, K.D., Arzoomanian, R.Z., Alberti, D., Feierabend, C., Pomplun, M., Wilding, G., and Bailey, H.H. (1998) Phase I Clinical Trial of Perillyl Alcohol Administered Daily, Clin. Cancer Res. 4, 1159–1164.PubMedGoogle Scholar
  53. 53.
    Vigushin, D.M., Poon, G.K., Boddy, A., English, J., Halbert, G.W., Pagonis, C., Jarman, M., and Coombes, R.C. (1998) Phase I and Pharmacokinetic Study of d-Limonene in Patients with Advanced Cancer. Cancer Research Campaign Phase I/II Clinical Trials Committee, Cancer Chemother. Pharmacol. 42, 111–117.PubMedCrossRefGoogle Scholar
  54. 54.
    Hudes, G.R., Szarka, C.E., Adams, A., Ranganathan, S., McCauley, R.A., Weiner, L.M., Langer, C.J., Litwin, S., Yeslow, G., Halberr, T., et al. (2000) Phase I Pharmacokinetic Trial of Perillyl Alcohol (NSC 641066) in Patients with Refractory Solid Malignancies, Clin. Cancer Res. 6, 3071–3080.PubMedGoogle Scholar
  55. 55.
    Ripple, G.H., Gould, M.N., Arzoomanian, R.Z., Alberti, D., Feierabend, C., Simon, K., Binger, K., Tutsch, K.D., Pomplun, M., Wahamaki, A., et al. (2000) Phase I Clinical and Pharmacokinetic Study of Perillyl Alcohol Administered Four Times a Day, Clin. Cancer Res. 6, 390–396.PubMedGoogle Scholar
  56. 56.
    Murren, J.R., Pizzorno, G., DiStasio, S.A., McKeon, A., Peccerillo, K., Gollerkari, A., McMurray, W., Burtness, B.A., Rutherford, T., Li, X., et al. (2002) Phase I Study of Perillyl Alcohol in Patients with Refractory Malignancies, Cancer Biol. Ther. 1, 130–135.PubMedGoogle Scholar
  57. 57.
    Bailey, H.H., Wilding, G., Tutsch, K.D., Arzoomanian, R.Z., Alberti, D., Feierabend, K.S., Marnocha, R., Holstein, S.A., Stewart, J., Lewis, K.A., and Hohl, R.J. (2004) A Phase I Trial of Perillyl Alcohol Administered 4 Times Daily for 14 Days out of 28 Days, Cancer Chemother. Pharmacol., in press.Google Scholar
  58. 58.
    Crowell, P.L., Chang, R.R., Ren, Z.B., Elson, C.E., and Gould, M.N. (1991) Selective Inhibition of Isoprenylation of 21–26 kDa Proteins by the Anticarcinogen d-Limonene and Its Metabolites, J. Biol. Chem. 266, 17679–17685.PubMedGoogle Scholar
  59. 59.
    Hohl, R.J., and Lewis, K. (1995) Differential Effects of Monoterpenes and Lovastatin on RAS Processing, J. Biol. Chem. 270, 17508–17512.PubMedCrossRefGoogle Scholar
  60. 60.
    Holstein, S.A., and Hohl, R.J. (2003) Monoterpene Regulation of Ras and Ras-Related Protein Expression, J. Lipid Res. 44, 1209–1215.PubMedCrossRefGoogle Scholar
  61. 61.
    Goodwin, T.E., Rasmussen, E.L., Guinn, A.C., McKelvey, S.S., Gunawardena, R., Riddle, S.W., and Riddle, H.S. (1999) African Elephant Sesquiterpenes, J. Nat. Prod. 62, 1570–1572.PubMedCrossRefGoogle Scholar
  62. 62.
    Schulz, S., Kruckert, K., and Weldon, P.J. (2003) New Terpene Hydrocarbons from the Alligatoridae (Crocodylia, Reptilia), J. Nat. Prod. 66, 34–38.PubMedCrossRefGoogle Scholar
  63. 63.
    Novotny, M., Harvey, S., and Jemiolo, B. (1990) Chemistry of Male Dominance in the House Mouse, Mus domesticus, Experientia 46, 109–113.PubMedCrossRefGoogle Scholar
  64. 64.
    McBrien, H.L., Millar, J.G., Rice, R.E., McElfresh, J.S., Cullen, E., and Zalom, F.G. (2002) Sex Attractant Pheromone of the Red-Shouldered Stink Bug Thyanta pallidovirens: A Pheromone Blend with Multiple Redundant Components, J. Chem. Ecol. 28, 1797–1818.PubMedCrossRefGoogle Scholar
  65. 65.
    Tesh, R.B., Guzman, H., and Wilson, M.L. (1992) Trans-Beta-Farnesene as a Feeding Stimulant for the Sand Fly Lutzomyia longipalpis (Diptera: Psychodidae), J. Med. Entomol. 29, 226–231.PubMedGoogle Scholar
  66. 66.
    Quintana, A., Reinhard, J., Faure, R., Uva, P., Bagnères, A.G., Massiot, G., and Clément, J.L. (2003) Interspecific Variation in Terpenoid Composition of Defensive Secretions of European Reticulitermes Termites, J. Chem. Ecol., 29, 639–652.PubMedCrossRefGoogle Scholar
  67. 67.
    Rowan, D.D., Hunt, M.B., Fielder, S., Norris, J., and Sherburn, M.S. (2001) Conjugated Triene Oxidation Products of α-Farnesene Induce Symptoms of Superficial Scald on Stored Apples, J. Agric. Food. Chem. 49, 2780–2787.PubMedGoogle Scholar
  68. 68.
    Kuriyama, T., Schmidt, T.J., Okuyama, E., and Ozoe, Y. (2002) Structure-Activity Relationships of seco-Prezizaane Terpenoids in γ-Aminobutyric Acid Receptors of Houseflies and Rats, Bioorg. Med. Chem. 10, 1873–1881.PubMedCrossRefGoogle Scholar
  69. 69.
    Castro, V., Murillo, R., Klaas, C.A., Meunier, C., Mora, G., Pahl, H.L., and Merfort, I. (2000) Inhibition of the Transcription Factor NF-κB by Sesquiterpene Lactones from Podachaenium eminens, Planta Med. 66, 591–595.PubMedCrossRefGoogle Scholar
  70. 70.
    Duan, H., Takaishi, Y., Momota, H., Ohmoto, Y., Taki, T., Jia, Y., and Li, D. (2001) Immunosuppressive Sesquiterpene Alkaloids from Tripterygium wilfordii, J. Nat. Prod. 64, 582–587.PubMedCrossRefGoogle Scholar
  71. 71.
    Appendino, G., Spagliardi, P., Cravotto, G., Pocock, V., and Milligan, S. (2002) Daucane Phytoestrogens: A Structure-Activity Study, J. Nat. Prod. 65, 1612–1615.PubMedCrossRefGoogle Scholar
  72. 72.
    Chang, F.R., Hayashi, K., Chen, I.H., Liaw, C.C., Bastow, K.F., Nakanishi, Y., Nozaki, H., Cragg, G.M., Wu, Y.C., and Lee, K.H. (2003) Antitumor Agents. 228. Five New Agarofurans, Reissantins A-E, and Cytotoxic Principles from Reissantia buchananii, J. Nat. Prod. 66, 1416–1420.PubMedGoogle Scholar
  73. 73.
    Jeong, S.J., Itokawa, T., Shibuya, M., Kuwano, M., Ono, M., Higuchi, R., and Miyamoto, T. (2002) Costunolide, a Sesquiterpene Lactone from Saussurea lappa, Inhibits the VEGFR KDR/Flk-1 Signaling Pathway, Cancer Lett. 187, 129–133.PubMedCrossRefGoogle Scholar
  74. 74.
    Duan, H., Takaishi, Y., Imakura, Y., Jia, Y., Li, D., Cosentino, L.M., and Lee, K.H. (2000) Sequiterpene Alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii: A New Class of Potent Anti-HIV Agents, J. Nat. Prod. 63, 357–361.PubMedCrossRefGoogle Scholar
  75. 75.
    Christophe, J., and Popják, G. (1961) Studies on the Biosynthesis of Cholesterol: XIV. The Origin of Prenoic Acids from Allyl Pyrophosphates in Liver Enzyme Systems, J. Lipid Res. 2, 244–257.Google Scholar
  76. 76.
    Bansal, V.S., and Vaidya, S. (1994) Characterization of Two Distinct Allyl Pyrophosphatase Activities from Rat Liver Microsomes, Arch. Biochem. Biophys. 315, 393–399.PubMedCrossRefGoogle Scholar
  77. 77.
    Meigs, T.E., and Simoni, R.D. (1997) Farnesol as a Regulator of HMG-CoA Reductase Degradation: Characterization and Role of Farnesyl Pyrophosphatase, Arch. Biochem. Biophys. 345, 1–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Huang, Z., and Poulter, C.D. (1989) Stereochemical Studies of Botryococcene Biosynthesis: Analogies Between 1′-1 and 1′-3 Condensations in the Isoprenoid Pathway, J. Am. Chem. Soc. 111, 2713–2715.CrossRefGoogle Scholar
  79. 79.
    Crick, D.C., Andres, D.A., and Waechter, C.J. (1995) Farnesol Is Utilized for Protein Isoprenylation and the Biosynthesis of Cholesterol in Mammalian Cells, Biochem. Biophys. Res. Commun. 211, 590–599.PubMedCrossRefGoogle Scholar
  80. 80.
    Fliesler, S.J., and Keller, R.K. (1995) Metabolism of [3H]Farnesol to Cholesterol and Cholesterogenic Intermediates in the Living Rat Eye, Biochem. Biophys. Res. Commun. 210, 695–702.PubMedCrossRefGoogle Scholar
  81. 81.
    Westfall, D., Aboushadi, N., Shackelford, J.E., and Krisans, S.K. (1997) Metabolism of Farnesol: Phosphorylation of Farnesol by Rat Liver Microsomal and Peroxisomal Fractions, Biochem. Biophys. Res. Commun. 210, 562–568.CrossRefGoogle Scholar
  82. 82.
    Tachibana, A., Tanaka, T., Taniguchi, M., and Oi, S. (1996) Evidence for Farnesol-Mediated Isoprenoid Synthesis Regulation in a Halophilic Archaeon, Haloferax volcanii, FEBS Lett. 379, 43–46.PubMedCrossRefGoogle Scholar
  83. 83.
    Bentinger, M., Grunler, J., Peterson, E., Swiezewska, E., and Dallner, G. (1998) Phosphorylation of Farnesol in Rat Liver Microsomes: Properties of Farnesol Kinase and Farnesyl Phosphate Kinase, Arch. Biochem. Biophys. 353, 191–198.PubMedCrossRefGoogle Scholar
  84. 84.
    Thai, L., Rush, J.S., Maul, J.E., Devarenne, T., Rodgers, D.L., Chappell, J., and Waechter, C.J. (1999) Farnesol Is Utilized for Isoprenoid Biosynthesis in Plant Cells via Farnesyl Pyrophosphate Formed by Successive Monophosphorylation Reactions, Proc. Natl. Acad. Sci. USA 96, 13080–13085.PubMedCrossRefGoogle Scholar
  85. 85.
    Wagner, P.D., and Wu, N.D. (2000) Phosphorylation of Geranyl and Farnesyl Pyrophosphates by Nm23 Proteins/Nucleoside Diphosphate Kinases, J. Biol. Chem. 275, 35570–35576.PubMedCrossRefGoogle Scholar
  86. 86.
    Gonzalez-Pacanowska, D., Arison, B., Havel, C.M., and Watson, J.A. (1988) Isopentenoid Synthesis in Isolated Embryonic Drosophila Cells. Farnesol Catabolism and Omega-Oxidation, J. Biol. Chem. 263, 1301–1306.PubMedGoogle Scholar
  87. 87.
    Fliesler, S.J., and Schroepfer, G.J., Jr. (1983) Metabolism of Mevalonic Acid in Cell-Free Homogenates of Bovine Retinas. Formation of Novel Isoprenoid Acids, J. Biol. Chem. 258, 15062–15070.PubMedGoogle Scholar
  88. 88.
    Keung, W.M. (1991) Human Liver Alcohol Dehydrogenases Catalyze the Oxidation of the Intermediary Alcohols of the Shunt Pathway of Mevalonate Metabolism, Biochem. Biophys. Res. Commun. 174, 701–707.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang, L., Tschantz, W.R., and Casey, P.J. (1997) Isolation and Characterization of a Prenylcysteine Lyase from Bovine Brain, J. Biol. Chem. 272, 23354–23359.PubMedCrossRefGoogle Scholar
  90. 90.
    Bostedor, R.G., Karkas, J.D., Arison, B.H., Bansal, V.S., Vaidya, S., Germershausen, J.I., Kurtz, M.M., and Bergstrom, J.D. (1997) Farnesol-Derived Dicarboxylic Acids in the Urine of Animals Treated with Zaragozic Acid A or with Farnesol, J. Biol. Chem. 272, 9197–9203.PubMedCrossRefGoogle Scholar
  91. 91.
    Vaidya, S., Bostedor, R., Kurtz, M.M., Bergstrom, J.D., and Bansal, V.S. (1998) Massive Production of Farnesol-Derived Dicarboxylic Acids in Mice Treated with the Squalene Synthase Inhibitor Zaragozic Acid A, Arch. Biochem. Biophys. 355, 84–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Baker, F.C., Mauchamp, B., Tsai, L.W., and Schooley, D.A. (1983) Farnesol and Farnesal Dehydrogenase(s) in Corpora Allata of the Tobacco Hornworm Moth, Manduca sexta, J. Lipid Res. 24, 1586–1594.PubMedGoogle Scholar
  93. 93.
    Keller, R.K., Zhao, Z., Chambers, C., and Ness, G.C. (1996) Farnesol Is Not the Nonsterol Regulator Mediating Degradation of HMG-CoA Reductase in Rat Liver, Arch. Biochem. Biophys. 328, 324–330.PubMedCrossRefGoogle Scholar
  94. 94.
    Roullet, J.B., Spaetgens, R.L., Burlingame, T., Feng, Z.P., and Zamponi, G.W. (1999) Modulation of Neuronal Voltage-Gated Calcium Channels by Farnesol, J. Biol. Chem. 274, 25439–25446.PubMedCrossRefGoogle Scholar
  95. 95.
    Saisho, Y., Morimoto, A., and Umeda, T. (1997) Determination of Farnesyl Pyrophosphate in Dog and Human Plasma by High-Performance Liquid Chromatography with Fluorescence Detection, Anal. Biochem. 252, 89–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Bruenger, E., and Rilling, H.C. (1988) Determination of Isopentenyl Diphosphate and Farnesyl Diphosphate in Tissue Samples with a Comment on Secondary Regulation of Polyisoprenoid Biosynthesis, Anal. Biochem. 173, 321–327.PubMedCrossRefGoogle Scholar
  97. 97.
    Raner, G.M., Muir, A.Q., Lowry, C.W., and Davis, B.A. (2002) Farnesol as an Inhibitor and Substrate for Rabbit Liver Microsomal P450 Enzymes, Biochem. Biophys. Res. Commun. 293, 1–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Feyereisen, R., Pratt, G.E., and Hamnett, A.F. (1981) Enzymic Synthesis of Juvenile Hormone in Locust Corpora Allata: Evidence for a Microsomal Cytochrome P-450 Linked Methyl Farnesoate Epoxidase, Eur. J. Biochem. 118, 231–238.PubMedCrossRefGoogle Scholar
  99. 99.
    Andersen, J.F., Walding, J.K., Evans, P.H., Bowers, W.S., and Feyereisen, R. (1997) Substrate Specificity for the Epoxidation of Terpenoids and Active Site Topology of House Fly Cytochrome P450 6A1, Chem. Res. Toxicol. 10, 156–164.PubMedCrossRefGoogle Scholar
  100. 100.
    Sutherland, T.D., Unnithan, G.C., Andersen, J.F., Evans, P.H., Murataliev, M.B., Szabo, L.Z., Mash, E.A., Bowers, W.S., and Feyereisen, R. (1998) A Cytochrome P450 Terpenoid Hydroxylase Linked to the Suppression of Insect Juvenile Hormone Synthesis, Proc. Nat. Acad. Sci. USA 95, 12884–12889.PubMedCrossRefGoogle Scholar
  101. 101.
    Bucher, N.L.R., McGarrahan, K., Gould, E., and Loud, A.V. (1959) Cholesterol Biosynthesis in Preparations of Liver from Normal, Fasting, X-Irradiated Cholesterol-Fed, Triton, or Δ4-Cholesten-3-one- Treated Rats, J. Biol. Chem. 234, 262–267.PubMedGoogle Scholar
  102. 102.
    Siperstein, M.D., and Fagan, V.M. (1966) Feedback Control of Mevalonate Synthesis by Dietary Cholesterol, J. Biol. Chem. 241, 602–609.PubMedGoogle Scholar
  103. 103.
    Brown, M.S., Faust, J.R., and Goldstein, J.L. (1978) Induction of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Activity in Human Fibroblasts Incubated with Compactin (ML-236B), a Competitive Inhibitor of the Reductase, J. Biol. Chem. 253, 1121–1128.PubMedGoogle Scholar
  104. 104.
    Sakakura, Y., Shimano, H., Sone, H., Takahashi, A., Inoue, N., Toyoshima, H., Suzuki, S., Yamada, N., and Inoue, K. (2001) Sterol Regulatory Element-Binding Proteins Induce an Entire Pathway of Cholesterol Synthesis, Biochem. Biophys. Res. Commun. 286, 176–183.PubMedCrossRefGoogle Scholar
  105. 105.
    Panini, S.R., Delate, T.A., and Sinensky, M. (1992) Post-transcriptional Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase by 24(S),25-Oxidolanosterol, J. Biol. Chem. 267, 12647–12654.PubMedGoogle Scholar
  106. 106.
    Dawson, P.A., Metherall, J.E., Ridgway, N.D., Brown, M.S., and Goldstein, J.L. (1991) Genetic Distinction Between Sterol-Mediated Transcriptional and Posttranscriptional Control of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase, J. Biol. Chem. 266, 9128–9134.PubMedGoogle Scholar
  107. 107.
    Nakanishi, M., Goldstein, J.L., and Brown, M.S. (1988) Multivalent Control of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Mevalonate-Derived Product Inhibits Translation of mRNA and Accelerates Degradation of Enzyme, J. Biol. Chem. 263, 8929–8937.PubMedGoogle Scholar
  108. 108.
    Roitelman, J., and Simoni, R.D. (1992) Distinct Sterol and Nonsterol Signals for the Regulated Degradation of 3-Hydroxy-3-methylglutaryl-CoA Reductase, J. Biol. Chem. 267, 25264–25273.PubMedGoogle Scholar
  109. 109.
    Correll, C.C., and Edwards, P.A. (1994) Mevalonic Acid-Dependent Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase in vivo and in vitro, J. Biol. Chem. 269, 633–638.PubMedGoogle Scholar
  110. 110.
    Correll, C.C., Ng, L., and Edwards, P.A. (1994) Identification of Farnesol as the Non-sterol Derivative of Mevalonic Acid Required for the Accelerated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase, J. Biol. Chem. 269, 17390–17393.PubMedGoogle Scholar
  111. 111.
    Bradfute, D.L., and Simoni, R.D. (1994) Non-sterol Compounds That Regulate Cholesterogenesis. Analogues of Farnesyl Pyrophosphate Reduce 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Levels, J. Biol. Chem. 269, 6645–6650.PubMedGoogle Scholar
  112. 112.
    Parker, R.A., Pearce, B.C., Clark, R.W., Gordon, D.A., and Wright, J.J. (1993) Tocotrienols Regulate Cholesterol Production in Mammalian Cells by Post-transcriptional Suppression of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase, J. Biol. Chem. 268, 11230–11238.PubMedGoogle Scholar
  113. 113.
    Gardner, R.G., and Hampton, R.Y. (1999) A Highly Conserved Signal Controls Degradation of 3-Hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) Reductase in Eukaryotes, J. Biol. Chem. 274, 31671–31678.PubMedCrossRefGoogle Scholar
  114. 114.
    Sever, N., Song, B.L., Yabe, D., Goldstein, J.L., Brown, M.S., and DeBose-Boyd, R.A. (2003) Insig-Dependent Ubiquitination and Degradation of Mammalian 3-Hydroxy-3-methylglutaryl-CoA Reductase Stimulated by Sterols and Geranylgeraniol, J. Biol. Chem. 278, 52479–52490.PubMedCrossRefGoogle Scholar
  115. 115.
    Peffley, D.M., and Gayen, A.K. (2003) Plant-Derived Monoterpenes Suppress Hamster Kidney Cell 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Synthesis at the Post-transcriptional Level, J. Nutr. 133, 38–44.PubMedGoogle Scholar
  116. 116.
    Seybold, S.J., and Tittiger, C. (2003) Biochemistry and Molecular Biology of de novo Isoprenoid Pheromone Production in the Scolytidae, Annu. Rev. Entomol. 48, 425–453.PubMedCrossRefGoogle Scholar
  117. 117.
    Hall, G.M., Tittiger, C., Blomquist, G.J., Andrews, G.L., Mastick, G.S., Barkawi, L.S., Bengoa, C., and Seybold, S.J. (2002) Male Jeffrey Pine Beetle, Dendroctonus jeffreyi, Synthesizes the Pheromone Component Frontalin in Anterior Midgut Tissue, Insect Biochem. Mol. Biol. 32, 1525–1532.PubMedCrossRefGoogle Scholar
  118. 118.
    Tittiger, C., Barkawi, L.S., Bengoa, C.S., Blomquist, G.J., and Seybold, S.J. (2003) Structure and Juvenile Hormone-Mediated Regulation of the HMG-CoA Reductase Gene from the Jeffrey Pine Beetle, Dendroctonus jeffreyi, Mol. Cell. Endocrinol. 199, 11–21.PubMedCrossRefGoogle Scholar
  119. 119.
    Stermer, B.A., Bianchini, G.M., and Korth, K.L. (1994) Regulation of HMG-CoA Reductase Activity in Plants, J. Lipid Res. 35, 1133–1140.PubMedGoogle Scholar
  120. 120.
    Wentzinger, L.F., Bach, T.J., and Hartmann, M.A. (2002) Inhibition of Squalene Synthase and Squalene Epoxidase in Tobacco Cells Triggers an Up-regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, Plant Physiol. 130, 334–346.PubMedCrossRefGoogle Scholar
  121. 121.
    Hemmerlin, A., and Bach, T.J. (2000) Farnesol-Induced Cell Death and Stimulation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Activity in Tobacco cv Bright Yellow-2 Cells, Plant Physiol. 123, 1257–1268.PubMedCrossRefGoogle Scholar
  122. 122.
    Endo, A., Kuroda, M., and Tsujita, Y. (1976) ML-236A, ML-236B, and ML-236C, New Inhibitors of Cholesterogenesis Produced by Penicillium citrinium, J. Antibiot. (Tokyo) 29, 1346–1348.Google Scholar
  123. 123.
    Schafer, W.R., Kim, R., Sterne, R., Thorner, J., Kim, S.H., and Rine, J. (1989) Genetic and Pharmacological Suppression of Oncogenic Mutations in RAS Genes of Yeast and Humans, Science 245, 379–385.PubMedCrossRefGoogle Scholar
  124. 124.
    Leonard, S., Beck, L., and Sinensky, M. (1990) Inhibition of Isoprenoid Biosynthesis and the Post-translational Modification of pro-p21, J. Biol. Chem. 265, 5157–5160.PubMedGoogle Scholar
  125. 125.
    Holstein, S.A., Wohlford-Lenane, C.L., and Hohl, R.J. (2002) Consequences of Mevalonate Depletion. Differential transcriptional, Translational, and Post-translational Up-regulation of Ras, Rap1a, RhoA, and RhoB, J. Biol. Chem. 277, 10678–10682.PubMedCrossRefGoogle Scholar
  126. 126.
    Laezza, C., Bucci, C., Santillo, M., Bruni, C.B., and Bifulco, M. (1998) Control of Rab5 and Rab7 Expression by the Isoprenoid Pathway, Biochem. Biophys. Res. Commun. 248, 469–472.PubMedCrossRefGoogle Scholar
  127. 127.
    Dimster-Denk, D., Schafer, W.R., and Rine, J. (1995) Control of RAS mRNA Level by the Mevalonate Pathway, Mol. Biol. Cell. 6, 59–70.PubMedGoogle Scholar
  128. 128.
    Holstein, S.A., Wohlford-Lenane, C.L., and Hohl, R.J. (2002) Isoprenoids Influence the Expression of Ras and Ras-Related Proteins, Biochemistry 41, 13698–13704.PubMedCrossRefGoogle Scholar
  129. 129.
    Holstein, S.A., Wohlford-Lenane, C.L., Wiemer, D.F., and Hohl, R.J. (2003) Isoprenoid Pyrophosphate Analogues Regulate Expression of Ras-Related Proteins, Biochemistry 42, 4384–4391.PubMedCrossRefGoogle Scholar
  130. 130.
    Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., McMorris, T., Lamph, W.W., et al. (1995) Identification of a Nuclear Receptor That Is Activated by Farnesol Metabolites, Cell 81, 687–693.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang, H., Chen, J., Hollister, K., Sowers, L.C., and Forman, B.M. (1999) Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR, Mol. Cell. 3, 543–553.PubMedCrossRefGoogle Scholar
  132. 132.
    Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., and Lehmann, J.M. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor, Science 284, 1365–1368.PubMedCrossRefGoogle Scholar
  133. 133.
    Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., and Shan, B. (1999) Identification of a Nuclear Receptor for Bile Acids, Science 284, 1362–1365.PubMedCrossRefGoogle Scholar
  134. 134.
    Hanley, K., Komuves, L.G., Ng, D.C., Schoonjans, K., He, S.S., Lau, P., Bikle, D.D., Williams, M.L., Elias, P.M., Auwerx, J., and Feingold, K.R. (2000) Farnesol Stimulates Differentiation in Epidermal Keratinocytes via PPARα, J. Biol. Chem. 275, 11484–11491.PubMedCrossRefGoogle Scholar
  135. 135.
    Mangelsdorf, D.J., Kliewer, S.A., Kakizuka, A., Umesono K., and Evans, R.M. (1993) Retinoid Receptors, Recent Prog. Horm. Res. 48, 99–121.PubMedGoogle Scholar
  136. 136.
    Harmon, M.A., Boehm, M.F., Heyman, R.A., and Mangelsdorf, D.J. (1995) Activation of Mammalian Retinoid X Receptors by the Insect Growth Regulator Methoprene, Proc. Natl. Acad. Sci. USA 92, 6157–6160.PubMedCrossRefGoogle Scholar
  137. 137.
    Gan, X., Kaplan, R., Menke, J.G., MacNaul, K., Chen, Y., Sparrow, C.P., Zhou, G., Wright, S.D., and Cai, T.Q. (2001) Dual Mechanisms of ABCA1 Regulation by Geranylgeranyl Pyrophosphate, J. Biol. Chem. 276, 48702–48708.PubMedCrossRefGoogle Scholar
  138. 138.
    Rioja, A., Pizzey, A.R., Marson, C.M., and Thomas, N.S. (2000) Preferential Induction of Apoptosis of Leukaemic Cells by Farnesol, FEBS. Lett. 467, 291–295.PubMedCrossRefGoogle Scholar
  139. 139.
    Voziyan, P.A., Haug, J.S., and Melnykovych, G. (1995) Mechanism of Farnesol Cytotoxicity: Further Evidence for the Role of PKC-Dependent Signal Transduction in Farnesol-Induced Apoptotic Cell Death, Biochem. Biophys. Res. Commun. 212, 479–486.PubMedCrossRefGoogle Scholar
  140. 140.
    Yasugi, E., Nakata, K., Yokoyama, Y., Kano, K., Dohi, T., and Oshima, M. (1998) Dihydroheptaprenyl and Dihydrodecaprenyl Monophosphates Induce Apoptosis Mediated by Activation of Caspase-3-like Protease, Biochim. Biophys. Acta 1389, 132–140.PubMedGoogle Scholar
  141. 141.
    Miquel, K., Pradines, A., Terce, F., Selmi, S. and Favre, G. (1998) Competitive Inhibition of Choline Phosphotransferase by Geranylgeraniol and Farnesol Inhibits Phosphatidylcholine Synthesis and Induces Apoptosis in Human Lung Adenocarcinoma A549 Cells, J. Biol. Chem. 273, 26179–26186.PubMedCrossRefGoogle Scholar
  142. 142.
    Burke, Y.D., Stark, M.J., Roach, S.L., Sen, S.E., and Crowell, P.L. (1997) Inhibition of Pancreatic Cancer Growth by the Dietary Isoprenoids Farnesol and Geraniol, Lipids 32, 151–156.PubMedCrossRefGoogle Scholar
  143. 143.
    Machida, K., Tanaka, T., Fujita, K., and Taniguchi, M. (1998) Farnesol-Induced Generation of Reactive Oxygen Species via Indirect Inhibition of the Mitochondrial Electron Transport Chain in the Yeast Saccharomyces cerevisiae, J. Bacteriol. 180, 4460–4465.PubMedGoogle Scholar
  144. 144.
    Voziyan, P.A., Goldner, C.M., and Melnykovych, G. (1993) Farnesol Inhibits Phosphatidylcholine Biosynthesis in Cultured Cells by Decreasing Cholinephosphotransferase Activity, Biochem. J. 295, 757–762.PubMedGoogle Scholar
  145. 145.
    Wright, M.M., Henneberry, A.L., Lagace, T.A., Ridgway, N.D., and McMaster, C.R. (2001) Uncoupling Farnesol-Induced Apoptosis from Its Inhibition of Phosphatidylcholine Synthesis, J. Biol. Chem. 276, 25254–25261.PubMedCrossRefGoogle Scholar
  146. 146.
    Yazlovitskaya, E.M., and Melnykovych, G. (1995) Selective Farnesol Toxicity and Translocation of Protein Kinase C in Neoplastic HeLa-S3K and Non-neoplastic CF-3 Cells, Cancer Lett. 88, 179–183.PubMedCrossRefGoogle Scholar
  147. 147.
    Machida, K., and Tanaka, T. (1999) Farnesol-Induced Generation of Reactive Oxygen Species Dependent on Mitochondrial Transmembrane Potential Hyperpolarization Mediated by F(0)F(1)-ATPase in Yeast, FEBS Lett. 462, 108–112.PubMedCrossRefGoogle Scholar
  148. 148.
    Rajbhandari, I., Takamatsu, S., and Nagle, D.G. (2001) A New Dehydrogeranylgeraniol Antioxidant from Saururus cernuus That Inhibits Intracellular Reactive Oxygen Species (ROS)-Catalyzed Oxidation Within HL-60 Cells, J. Nat. Prod. 64, 693–695.PubMedCrossRefGoogle Scholar
  149. 149.
    Roullet, J.B., Xue, H., Chapman, J., McDougal, P., Roullet, C.M., and McCarron, D.A. (1996) Farnesyl Analogues Inhibit Vasoconstriction in Animal and Human Arteries, J. Clin. Invest. 97, 2384–2390.PubMedGoogle Scholar
  150. 150.
    Roullet, J.B., Luft, U.C., Xue, H., Chapman, J., Bychkov, R., Roullet, C.M., Luft, F.C., Haller, H., and McCarron, D.A. (1997) Farnesol Inhibits L-Type Ca2+ Channels in Vascular Smooth Muscle Cells, J. Biol. Chem. 272, 32240–32246.PubMedCrossRefGoogle Scholar
  151. 151.
    Oh, K.B., Miyazawa, H., Naito, T., and Matsuoka, H. (2001) Purification and Characterization of an Autoregulatory Substance Capable of Regulating the Morphological Transition in Candida albicans, Proc. Natl. Acad. Sci. USA 98, 4664–4668.PubMedCrossRefGoogle Scholar
  152. 152.
    Kim, S., Kim, E., Shin, D.S., Kang, H., and Oh, K.B. (2002) Evaluation of Morphogenic Regulatory Activity of Farnesoic Acid and Its Derivatives Against Candida albicans Dimorphism, Bioorg. Med. Chem. Lett. 12, 895–898.PubMedCrossRefGoogle Scholar
  153. 153.
    Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. (2001) Quorum Sensing in the Dimorphic Fungus Candida albicans is Mediated by Farnesol, Appl. Environ. Microbiol. 67, 2982–2992.PubMedCrossRefGoogle Scholar
  154. 154.
    Hornby, J.M., Kebaara, B.W., and Nickerson, K.W. (2003) Farnesol Biosynthesis in Candida albicans: Cellular Response to Sterol Inhibition by Zaragozic Acid B, Antimicrob. Agents Chemother. 47, 2366–2369.PubMedCrossRefGoogle Scholar
  155. 155.
    Ramage, G., Saville, S.P., Wickes, B.L., and Lopez-Ribot, J.L. (2002) Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule, Appl. Environ. Microbiol. 68, 5459–5463.PubMedGoogle Scholar
  156. 156.
    Koga, T., Kawada, H., Utsui, Y., Domon, H., Ishii, C., and Yasuda, H. (1996) In-vitro and in-vivo Antibacterial Activity of Plaunotol, a Cytoprotective Antiulcer Agent, Against Heli-cobacter pylori, J. Antimicrob. Chemother. 37, 919–929.PubMedGoogle Scholar
  157. 157.
    Rasoamiaranjanahary, L., Marston, A., Guilet, D., Schenk, K., Randimbivolona, F., and Hostettmann, K. (2003) Antifungal Diterpenes from Hypoestes serpens (Acanthaceae), Phytochemistry 62, 333–337.PubMedCrossRefGoogle Scholar
  158. 158.
    Habtemariam, S. (2003) In vitro Antileishmanial Effects of Antibacterial Diterpenes from Two Ethiopian Premna Species: P. schimperi and P. oligotricha, BMC Pharmacol. 3, 6.PubMedCrossRefGoogle Scholar
  159. 159.
    Carroll, J., Jonsson, E.N., Ebel, R., Hartman, M.S., Holman, T.R., and Crews, P. (2001) Probing Sponge-Derived Terpenoids for Human 15-Lipoxygenase Inhibitors, J. Org. Chem. 66, 6847–6851.PubMedCrossRefGoogle Scholar
  160. 160.
    Klein Gebbinck, E.A., Jansen, B.J., and de Groot, A. (2002) Insect Antifeedant Activity of Clerodane Diterpenes and Related Model Compounds, Phytochemistry 61, 737–770.PubMedCrossRefGoogle Scholar
  161. 161.
    Silva, R.M., Santos, F.A., Rao, V.S., Maciel, M.A., and Pinto, A.C. (2001) Blood Glucose- and Triglyceride-Lowering Effect of trans-Dehydrocrotonin, a Diterpene from Croton cajucara Benth., in Rats, Diabetes Obes. Metab. 3, 452–456.PubMedCrossRefGoogle Scholar
  162. 162.
    Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matsunaga, S., and Tanaka, R. (2001) Anti-tumor Promoting Diterpenes from the Stem Bark of Thuja standishii (Cupressaceae), Bioorg. Med. Chem. 9, 1911–1921.PubMedCrossRefGoogle Scholar
  163. 163.
    Ownby, S.E., and Hohl, R.J. (2002) Farnesol and Geranyl-geraniol: Prevention and Reversion of Lovastatin-Induced Effects in NIH3T3 Cells, Lipids 37, 185–192.PubMedCrossRefGoogle Scholar
  164. 164.
    Ohnuma, S., Watanabe, M., and Nishino, T. (1996) Identification and Characterization of Geranylgeraniol Kinase and Geranylgeranyl Phosphate Kinase from the Archaebacterium Sulfolobus acidocaldarius, J. Biochem. (Tokyo) 119, 541–547.Google Scholar
  165. 165.
    Kodaira, Y., Usui, K., Kon, I., and Sagami, H. (2002) Formation of (R)-2,3-Dihydrogeranylgeranoic Acid from Geranylgeraniol in Rat Thymocytes, J. Biochem (Tokyo) 132, 327–334.Google Scholar
  166. 166.
    Wang, X., Wu, J., Shidoji, Y., Muto, Y., Ohishi, N., Yagi, K., Ikegami, S., Shinki, T., Udagawa, N., Suda, T., and Ishimi, Y. (2002) Effects of Geranylgeranoic Acid in Bone: Induction of Osteoblast Differentiation and Inhibition of Osteoclast Formation, J. Bone Miner. Res. 17, 91–100.PubMedCrossRefGoogle Scholar
  167. 167.
    Nishizawa, Y., Tanaka, H., and Kinoshita, K. (1987) Incorporation of Radioactivity into Amino Acids and Fatty Acids After Administration of 14C-Geranylgeranylacetone to Rats, Xenobiotica 17, 469–476.PubMedGoogle Scholar
  168. 168.
    Nishizawa, Y., Abe, S., Yamada, K., Nakamura, T., Yamatsu, I., and Kinoshita, K. (1987) Identification of Urinary and Microsomal Metabolites of Geranylgeranylacetone in Rats, Xenobiotica 17, 575–584.PubMedCrossRefGoogle Scholar
  169. 169.
    Ohizumi, H., Masuda, Y., Nakajo, S., Ohsawa, S., and Nakaya, K. (1995) Geranylgeraniol Is a Potent Inducer of Apoptosis in Tumor Cells, J. Biochem. (Tokyo) 117, 11–13.Google Scholar
  170. 170.
    Takeda, Y., Nakao, K., Nakata, K., Kawakami, A., Ida, H., Ichikawa, T., Shigeno, M., Kajiya, Y., Hamasaki, K., Kato, Y., and Eguchi, K. (2001) Geranylgeraniol, an Intermediate Product in Mevalonate Pathway, Induces Apoptotic Cell Death in Human Hepatoma Cells: Death Receptor-Independent Activation of Caspase-8 with Down-Regulation of Bcl-xL Expression, Jpn. J. Cancer Res. 92, 918–925.PubMedGoogle Scholar
  171. 171.
    Shidoji, Y., Nakamura, N., Moriwaki, H., and Muto, Y. (1997) Rapid Loss in the Mitochondrial Membrane Potential During Geranylgeranoic Acid-Induced Apoptosis, Biochem. Biophys. Res. Commun. 230, 58–63.PubMedCrossRefGoogle Scholar
  172. 172.
    Kotake-Nara, E., Kim, S.J., Kobori, M., Miyashita, K., and Nagao, A. (2002) Acyclo-Retinoic Acid Induces Apoptosis in Human Prostate Cancer Cells, Anticancer Res. 22, 689–695.PubMedGoogle Scholar
  173. 173.
    Nakajo, S., Okamoto, M., Masuda, Y., Sakai, I., Ohsawa, S., and Nakaya, K. (1996) Geranylgeraniol Causes a Decrease in Levels of Calreticulin and Tyrosine Phosphorylation of a 36-kDa Protein Prior to the Appearance of Apoptotic Features in HL-60 Cells, Biochem. Biophys. Res. Commun. 226, 741–745.PubMedCrossRefGoogle Scholar
  174. 174.
    Masuda, Y., Nakaya, M., Nakajo, S., and Nakaya, K. (1997) Geranylgeraniol Potently Induces Caspase-3-Like Activity During Apoptosis in Human Leukemia U937 Cells, Biochem. Biophys. Res. Commun. 234, 641–645.PubMedCrossRefGoogle Scholar
  175. 175.
    Masuda, Y., Nakaya, M., Aiuchi, T., Hashimoto, S., Nakajo, S., and Nakaya, K. (2000) The Mechanism of Geranylgeraniol-Induced Apoptosis Involves Activation, by a Caspase-3-like Protease, of a c-jun N-Terminal Kinase Signaling Cascade and Differs from Mechanisms of Apoptosis Induced by Conventional Chemotherapeutic Drugs, Leuk. Res. 24, 937–950.PubMedCrossRefGoogle Scholar
  176. 176.
    Nakamura, N., Shidoji, Y., Moriwaki, H., and Muto, Y. (1996) Apoptosis in Human Hepatoma Cell Line Induced by 4,5-Didehydro Geranylgeranoic Acid (acyclic retinoid) via Down-Regulation of Transforming Growth Factor-α, Biochem. Biophys. Res. Commun. 219, 100–104.PubMedCrossRefGoogle Scholar
  177. 177.
    Murakami, M., Oketani, K., Fujisaki, H., Wakabayashi, T., and Ohgo, T. (1981) Antiulcer Effect of Geranylgeranylacetone, a New Acyclic Polyisoprenoid, on Experimentally Induced Gastric and Duodenal Ulcers in Rats, Arzneimittelforschung. 31, 799–804.PubMedGoogle Scholar
  178. 178.
    Terano, A., Hiraishi, H., Ota, S., and Sugimoto, T. (1986) Geranylgeranylacetone, a Novel Anti-ulcer Drug, Stimulates Mucus Synthesis and Secretion in Rat Gastric Cultured Cells, Digestion 33, 206–210.PubMedCrossRefGoogle Scholar
  179. 179.
    Yoshimura, N., Suzuki, Y., and Saito, Y. (2002) Suppression of Helicobacter pylori-Induced Interleukin-8 Production in Gastric Cancer Cell Lines by an Anti-ulcer Drug, Geranylgeranylacetone, J. Gastroenterol. Hepatol. 17, 1153–1160.PubMedCrossRefGoogle Scholar
  180. 180.
    Tsutsumi, S, Rokutan, K., Tsuchiya, T., and Mizushima, T. (1999) Geranylgeranylacetone Suppresses Spontaneous Apoptotic DNA Fragmentation in Cultured Guinea Pig Gastric Pit Cells, Biol. Pharm. Bull. 22, 886–887.PubMedGoogle Scholar
  181. 181.
    Hirakawa, T., Rokutan, K., Nikawa, T., and Kishi, K. (1996) Geranylgeranylacetone Induces Heat Shock Proteins in Cultured Guinea Pig Gastric Mucosal Cells and Rat Gastric Mucosa, Gastroenterology 111, 345–357.PubMedCrossRefGoogle Scholar
  182. 182.
    Tsuruma, T., Yagihashi, A., Hirata, K., Araya, J., Katsuramaki, T., Tarumi, K., Yanai, Y., and Watanabe, N. (2000) Induction of Heat Shock Protein-70 (hsp-70) by Intraarterial Administration of Geranylgeranylacetone, Transplant. Proc. 32, 1631–1633.PubMedCrossRefGoogle Scholar
  183. 183.
    Fujiki, M., Kobayashi, H., Abe, T., and Ishii, K. (2003) Astroglial Activation Accompanies Heat Shock Protein Upregulation in Rat Brain Following Single Oral Dose of Geranylgeranylacetone, Brain Res. 991, 254–257.PubMedCrossRefGoogle Scholar
  184. 184.
    Caprioli, J., Ishii, Y., and Kwong, J.M. (2003) Retinal Ganglion Cell Protection with Geranylgeranylacetone, a Heat Shock Protein Inducer, in a Rat Glaucoma Model, Trans. Am. Ophthalmol. Soc. 101, 39–50.PubMedGoogle Scholar
  185. 185.
    Fudaba, Y., Ohdan, H., Tashiro, H., Ito, H., Fukuda, Y., Dohi, K., and Asahara, T. (2001) Geranylgeranylacetone, a Heat Shock Protein Inducer, Prevents Primary Graft Nonfunction in Rat Liver Transplantation, Transplantation 72, 184–189.PubMedCrossRefGoogle Scholar
  186. 186.
    Yamanaka, K., Takahashi, N., Ooie, T., Kaneda, K., Yoshimatsu, H., and Saikawa, T. (2003) Role of Protein Kinase C in Geranylgeranylacetone-Induced Expression of Heat-Shock Protein 72 and Cardioprotection in the Rat Heart, J. Mol. Cell. Cardiol. 35, 785–794.PubMedCrossRefGoogle Scholar
  187. 187.
    Koga, T., Watanabe, H., Kawada, H., Takahashi, K., Utsui, Y., Domon, H., Ishii, C., Narita, T., and Yasuda, H. (1998) Interactions of Plaunotol with Bacterial Membranes, J. Antimicrob. Chemother. 42, 133–140.PubMedCrossRefGoogle Scholar
  188. 188.
    Ushiyama, S., Matsuda, K., Asai, F., and Yamazaki, M. (1987) Stimulation of Prostaglandin Production by (2E, 6Z, 10E)-7-Hydroxymethyl-3,11,15-trimethyl-2,6,10,14-hexadecatetraen-1-ol (plaunotol_, a New Anti-Ulcer Drug, in vitro and in vivo, Biochem. Pharmacol. 36, 369–375.PubMedCrossRefGoogle Scholar
  189. 189.
    Chang, J.H., Watanabe, S., Shiratori, K., Moriyoshi, Y., and Takeuchi, T. (1989) Plaunotol Stimulates Endogenous Secretin Release and Exocrine Pancreatic Secretion in Rats, Digestion 44, 142–147.PubMedCrossRefGoogle Scholar
  190. 190.
    Okabe, N., Okada, M., Sakai, T., and Kuroiwa, A. (1995) Effect of Plaunotol on Superoxide Production Activity in vivo, Dig. Dis. Sci. 40, 2321–2322.PubMedCrossRefGoogle Scholar
  191. 191.
    Murakami, K., Okajima, K., Harada, N., Isobe, H., Liu, W., Johno, M., and Okabe, H. (1999) Plaunotol Prevents Indomethacin-Induced Gastric Mucosal Injury in Rats by Inhibiting Neutrophil Activation, Aliment. Pharmacol. Ther. 13, 521–530.PubMedCrossRefGoogle Scholar
  192. 192.
    Zimmermann, P.R., Chatfield, R.B., Fishman, J., Crutzen, P.J., and Hanst, P.L. (1978) Estimates of the Production of CO and H2 from the Oxidation of Hydrocarbon Emissions from Vegetation, Geophys. Res. Lett. 5, 679–682.Google Scholar
  193. 193.
    Rontani, J.F., Bonin, P.C., and Volkman, J.K. (1999) Biodegradation of Free Phytol by Bacterial Communities Isolated from Marine Sediments Under Aerobic and Denitrifying Conditions, Appl. Environ. Microbiol. 65, 5484–5492.PubMedGoogle Scholar
  194. 194.
    Pirnik, M.P., Atlas, R.M., and Bartha, R. (1974) Hydrocarbon Metabolism by Brevibacterium erythrogenes: Normal and Branched Alkanes, J. Bacteriol. 119, 868–878.PubMedGoogle Scholar
  195. 195.
    Berthou, F., and Friovourt, M.P. (1981) Gas Chromatographic Separation of Diastereomeric Isoprenoids as Molecular Markers of Oil Pollution, J. Chromatogr. A. 219, 393–402.CrossRefGoogle Scholar
  196. 196.
    Harder, J., and Probian, C. (1995) Microbial Degradation of Monoterpenes in the Absence of Molecular Oxygen, Appl. Environ. Microbiol. 61, 3804–3808.PubMedGoogle Scholar
  197. 197.
    Rontani, J.F., Mouzdahir, A., Michotey, V., and Bonin, P. (2002) Aerobic and Anaerobic Metabolism of Squalene by a Denitrifying Bacterium Isolated from Marine Sediment, Arch. Microbiol. 178, 279–287.PubMedCrossRefGoogle Scholar
  198. 198.
    Harder, J., and Probian, C. (1997) Anaerobic Mineralization of Cholesterol by a Novel Type of Denitrifying Bacterium, Arch. Microbiol. 167, 269–274.PubMedCrossRefGoogle Scholar
  199. 199.
    Misra, G., Pavlostathis, S.G., Perdue, E.M., and Araujo, R. (1996) Aerobic Biodegradation of Selected Monoterpenes, Appl. Microbiol. Biotechnol. 45, 831–838.PubMedCrossRefGoogle Scholar
  200. 200.
    Hara, A., Syutsubo, K., and Harayama, S. (2003) Alcanivorax Which Prevails in Oil-Contaminated Seawater Exhibits Broad Substrate Specificity for Alkane Degradation, Environ. Microbiol. 5, 746–753.PubMedCrossRefGoogle Scholar
  201. 201.
    Linos, A., Berekaa, M.M., Reichelt, R., Keller, U., Schmitt, J., Flemming, H.C., Kroppenstedt, R.M., and Steinbuchel, A. (2000) Biodegradation of cis-1,4-Polyisoprene Rubbers by Distinct Actinomycetes: Microbial Strategies and Detailed Surface Analysis, Appl. Environ. Microbiol. 66, 1639–1645.PubMedCrossRefGoogle Scholar
  202. 202.
    Brown, A.G., Smale, T.C., King, T.J., Hasenkamp, R., and Thompson, R.H. (1976) Crystal and Molecular Structure of Compactin, a New Antifungal Metabolite from Penicillium brevicopactum, J. Chem. Soc. Perkin I, 1165–1170.CrossRefGoogle Scholar
  203. 203.
    Tanzawa, K., and Endo, A. (1979) Kinetic Analysis of the Reaction Catalyzed by Rat-Liver 3-Hydroxy-3-methylglutaryl-Coenzyme-A Reductase Using Two Specific Inhibitors, Eur. J. Biochem. 98, 195–201.PubMedCrossRefGoogle Scholar
  204. 204.
    Kaneko, I., Hazama-Shimada, Y., and Endo, A. (1978) Inhibitory Effects on Lipid Metabolism in Cultured Cells of ML-236B, a Potent Inhibitor of 3-Hydroxy-3-methylglutary-Coenzyme-A Reductase, Eur. J. Biochem. 87, 313–321.PubMedCrossRefGoogle Scholar
  205. 205.
    Doi, O., and Endo, A. (1978) Specific Inhibition of Desmosterol Synthesis by ML-236B in Mouse LM Cells Grown in Suspension in a Lipid-Free Medium, Jpn. J. Med. Sci. Biol. 31, 225–233.PubMedGoogle Scholar
  206. 206.
    Tsujita, Y., Kuroda, M., Tanzawa, K., Kitano, N., and Endo, A. (1979) Hypolipidemic Effects in Dogs of ML-236B, a Competitive Inhibitor of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, Atherosclerosis 32, 307–313.PubMedCrossRefGoogle Scholar
  207. 207.
    Kuroda, M., Tsujita, Y., Tanzawa, K., and Endo, A. (1979) Hypolipidemic Effects in Monkeys of ML-236B, a Competitive Inhibitor of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, Lipids 14, 585–589.PubMedGoogle Scholar
  208. 208.
    Yamamoto, A., Sudo, H., and Endo, A. (1980) Therapeutic Effects of ML-236B in Primary Hypercholesterolemia, Atherosclerosis 35, 259–266.PubMedCrossRefGoogle Scholar
  209. 209.
    Alberts, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E. et al. (1980) Mevinolin: A Highly Potent Competitive Inhibitor of Hydroxymethylglutaryl-Coenzyme A Reductase and a Cholesterol-Lowering Agent, Proc. Natl. Acad. Sci. USA 77, 3957–3961.PubMedCrossRefGoogle Scholar
  210. 210.
    Gunde-Cimerman, N., Plemenitas, A., and Cimerman, A. (1993) Pleurotus Fungi Produce Mevinolin, an Inhibitor of HMG CoA Reductase, FEMS Microbiol. Lett. 113, 333–337.PubMedCrossRefGoogle Scholar
  211. 211.
    Gunde-Cimerman, N., Plemenitas, A., and Cimerman, A. (1995) A Hydroxymethylglutaryl-CoA Reductase Inhibitor Synthesized by Yeasts, FEMS Microbiol. Lett. 132, 39–43.PubMedCrossRefGoogle Scholar
  212. 212.
    Endo, A. (1979) Monacolin K, a New Hypocholesterolemic Agent Produced by a Monascus Species, J. Antibiot. (Tokyo) 32, 852–854.Google Scholar
  213. 213.
    Shindia, A.A. (2000) Studies on Mevinolin Production by Some Fungi, Microbios 102, 53–61.PubMedGoogle Scholar
  214. 214.
    Topol, E.J. (2004) Intensive Statin Therapy—A Sea Change in Cardiovascular Prevention, New Engl. J. Med. 350, 1562–1564.PubMedCrossRefGoogle Scholar
  215. 215.
    Chan, K.K., Oza, A.M., and Siu, L.L. (2003) The Statins as Anticancer Agents, Clin. Cancer Res. 9, 10–19.PubMedGoogle Scholar
  216. 216.
    Meske, V., Albert, F., Richter, D., Schwarze, J., and Ohm, T.G. (2003) Blockade of HMG-CoA Reductase Activity Causes Changes in Microtubule-Stabilizing Protein Tau via Suppression of Geranylgeranylpyrophosphate Formation: Implications for Alzheimer's Disease, Eur. J. Neurosci. 17, 93–102.PubMedCrossRefGoogle Scholar
  217. 217.
    Bauer, D.C., Mundy, G.R., Jamal, S.A., Black, D.M., Cauley, J.A., Ensrud, K.E., van der Klift, M., and Pols, H.A. (2004) Use of Statins and Fracture: Results of 4 Prospective Studies and Cumulative Meta-analysis of Observational Studies and Controlled Trials, Arch. Intern. Med. 164, 146–152.PubMedCrossRefGoogle Scholar
  218. 218.
    Spin, J.M., and Vagelos, R.H. (2003) Early Use of Statins in Acute Coronary Syndromes, Curr. Atheroscler. Rep. 5, 44–51.PubMedGoogle Scholar
  219. 219.
    Weis, M., Heeschen, C., Glassford, A.J., and Cooke, J.P. (2002) Statins Have Biphasic Effects on Angiogenesis, Circulation 105, 739–745.PubMedCrossRefGoogle Scholar
  220. 220.
    Patel, R., Nagueh, S.F., Tsybouleva, N., Abdellatif, M., Lutucuta, S., Kopelen, H.A., Quinones, M.A., Zoghbi, W.A., Entman, M.L., Robert, R., and Marian, A.J. (2001) Simvastatin Induces Regression of Cardiac Hypertrophy and Fibrosis and Improves Cardiac Function in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy, Circulation 104, 317–324.PubMedGoogle Scholar
  221. 221.
    Blanco-Colio, L.M., Tunon, J., Martin-Ventura, J.L., and Egido, J. (2003) Anti-inflammatory and Immunomodulatory Effects of Statins, Kidney Int. 63, 12–23.PubMedCrossRefGoogle Scholar
  222. 222.
    Wolfrum, S., Jensen, K.S., and Liao, J.K. (2003) Endothelium-Dependent Effects of Statins, Arterioscler. Thromb. Vasc. Biol. 23, 729–736.PubMedCrossRefGoogle Scholar
  223. 223.
    Krysiak, R., Okopien, B., and Herman, Z. (2003) Effects of HMG-CoA Reductase Inhibitors on Coagulation and Fibrinolysis Processes, Drugs. 63, 1821–1854.PubMedCrossRefGoogle Scholar
  224. 224.
    Fenton, J.W., Jr., and Shen, G.X. (1999) Statins as Cellular Antithrombotics, Haemostasis 29, 166–169.PubMedCrossRefGoogle Scholar
  225. 225.
    Staunton, J., and Weissman, K.J. (2001) Polyketide Biosynthesis: A Millennium Review, Nat. Prod. Rep. 18, 380–416.PubMedCrossRefGoogle Scholar
  226. 226.
    Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Hosobuchi, M., and Yoshikawa, H. (2002) Molecular Cloning and Characterization of an ML-236B (compactin) Biosynthetic Gene Cluster in Penicillium citrinum, Mol. Genet. Genomics 267, 636–646.PubMedCrossRefGoogle Scholar
  227. 227.
    Hutchinson, C.R., Kennedy, J., Park, C., Kendrew, S., Auclair, K., and Vederas, J. (2000) Aspects of the Biosynthesis of Nonaromatic Fungal Polyketides by Iterative Polyketide Synthases, Antonie van Leeuwenhoek 78, 287–295.PubMedCrossRefGoogle Scholar
  228. 228.
    Hajjaj, H., Niederberger, P., and Duboc, P. (2001) Lovastatin Biosynthesis by Aspergillus terreus in a Chemically Defined Medium, Appl. Environ. Microbiol. 67, 2596–2602.PubMedCrossRefGoogle Scholar
  229. 229.
    Shindia, A.A. (2001) Some Nutritional Factors Influencing Mevinolin Production by Aspergillus terreus Strain, Folia Microbiol. (Praha) 46, 413–416.Google Scholar
  230. 230.
    Ikeura, R., Murakawa, S., and Endo, A. (1988) Growth Inhibition of Yeast by Compactin (ML-236B) Analogues, J. Antibiot. (Tokyo) 41, 1148–1150.Google Scholar
  231. 231.
    Bach, T.J., and Lichtenthaler, H.K. (1982) Mevinolin: A Highly Specific Inhibitor of Microsomal 3-Hydroxy-3-methylglutary-Coenzyme A Reductase of Radish Plants, Z. Naturforsch. [C] 37, 46–50.Google Scholar
  232. 232.
    Josekutty, P.C. (1998) Inhibition of Plant Growth by Mevinolin and Reversal of This Inhibition by Isoprenoids, S. Afr. J. Bot. 64, 18–24.Google Scholar
  233. 233.
    van Beek, E., Pieterman, E., Cohen, L., Lowik, C., and Papapoulos, S. (1999) Farnesyl Pyrophosphate Synthase Is the Molecular Target of Nitrogen-Containing Bisphosphonates, Biochem. Biophys. Res. Commun. 264, 108–111.PubMedCrossRefGoogle Scholar
  234. 234.
    Keller, R.K., and Fliesler, S.J. (1999) Mechanism of Aminobisphosphonate Action: Characterization of Alendronate Inhibition of the Isoprenoid Pathway, Biochem. Biophys. Res. Commun. 266, 560–563.PubMedCrossRefGoogle Scholar
  235. 235.
    Bergstrom, J.D., Bostedor, R.G., Masarachia, P.J., Reszka, A.A., and Rodan, G. (2000) Alendronate Is a Specific, Nanomolar Inhibitor of Farnesyl Diphosphate Synthase, Arch. Biochem. Biophys. 373, 231–241.PubMedCrossRefGoogle Scholar
  236. 236.
    Luckman, S.P., Hughes, D.E., Coxon, F.P., Graham, R., Russell, G., and Rogers, M.J. (1998) Nitrogen-Containing Bisphosphonates Inhibit the Mevalonate Pathway and Prevent Post-translational Prenylation of GTP-Binding Proteins, Including Ras, J. Bone Miner. Res. 13, 581–589.PubMedCrossRefGoogle Scholar
  237. 237.
    Reszka, A.A., Halasy-Nagy, J.M., Masarachia, P.J., and Rodan, G.A. (1999) Bisphosphonates Act Directly on the Osteoclast to Induce Caspase Cleavage of Mst1 Kinase During Apoptosis. A Link Between Inhibition of the Mevalonate Pathway and Regulation of an Apoptosis-Promoting Kinase, J. Biol. Chem. 274, 34967–34973.PubMedCrossRefGoogle Scholar
  238. 238.
    Benford, H.L., Frith, J.C., Auriola, S., Monkkonen, J., and Rogers, M.J. (1999) Farnesol and Geranylgeraniol Prevent Activation of Caspases by Aminobisphosphonates: Biochemical Evidence for Two Distinct Pharmacological Classes of Bisphosphonate Drugs, Mol. Pharmacol. 56, 131–140.PubMedGoogle Scholar
  239. 239.
    Fisher, J.E., Rogers, M.J., Halasy, J.M., Luckman, S.P., Hughes, D.E., Masarachia, P.J., Wesolowski, G., Russell, R.G., Rodan, G.A., and Reszka, A.A. (1999) Alendronate Mechanism of Action: Geranylgeraniol, an Intermediate in the Mevalonate Pathway, Prevents Inhibition of Osteoclast Formation, Bone Resorption, and Kinase Activation in vitro, Proc. Natl. Acad. Sci. USA 96, 133–138.PubMedCrossRefGoogle Scholar
  240. 240.
    van beek, E., Lowik, C., van der Pluijm, G., and Papapoulos, S. (1999) The Role of Geranylgeranylation in Bone Resorption and Its Suppression by Bisphosphonates in Fetal Bone Explants in vitro: A Clue to the Mechanism of Action of Nitrogen-Containing Bisphosphonates, J. Bone Miner. Res. 14, 722–729.CrossRefGoogle Scholar
  241. 241.
    Virtanen, S.S., Vaananen, H.K., Harkonen, P.L., and Lakkakorpi, P.T. (2002) Alendronate Inhibits Invasion of PC-3 Prostate Cancer Cells by Affecting the Mevalonate Pathway, Cancer Res. 62, 2708–2714.PubMedGoogle Scholar
  242. 242.
    Szabo, C.M., Matsumura, Y., Fukura, S., Martin, M.B., Sanders, J.M., Sengupta, S., Cieslak, J.A., Loftus, T.C., Lea, C.R., Lee, H.J., et al. (2002) Inhibition of Geranylgeranyl Diphosphate Synthase by Bisphosphonates and Diphosphates: A Potential Route to New Bone Antiresorption and Antiparasitic Agents, J. Med. Chem. 45, 2185–2196.PubMedCrossRefGoogle Scholar
  243. 243.
    Ohashi, K., Osuga, J., Tozawa, R., Kitamine, T., Yagyu, H., Sekiya, M., Tomita, S., Okazaki, H., Tamura, Y., Yahagi, N., et al. (2003) Early Embryonic Lethality Caused by Targeted Disruption of the 3-Hydroxy-3-methylglutaryl-CoA Reductase Gene, J. Biol. Chem. 278, 42936–42941.PubMedCrossRefGoogle Scholar
  244. 244.
    Berger, R., Smit, G.P., Schierbeek, H., Bijsterveld, K., and le Coultre, R. (1985) Mevalonic Aciduria: An Inborn Error of Cholesterol Biosynthesis?, Clin. Chim. Acta 152, 219–222.PubMedCrossRefGoogle Scholar
  245. 245.
    Houten, S.M., Frenkel, J., and Waterham, H.R. (2003) Isoprenoid Biosynthesis in Hereditary Periodic Fever Syndromes and Inflammation, Cell. Mol. Life Sci. 60, 1118–1134.PubMedGoogle Scholar
  246. 246.
    van der Meer, J.W., Vossen, J.M., Radl, J., van Nieuwkoop, J.A., Meyer, C.J., Lobatto, S., and van Furth, R. (1984) Hyperimmunoglobulinaemia D and Periodic Fever: A New Syndrome, Lancet 1, 1087–1090.PubMedGoogle Scholar
  247. 247.
    Houten, S.M., Romeijn, G.J., Koster, J., Gray, R.G., Darbyshire, P., Smit, G.P., de Klerk, J.B., Duran, M., Gibson, K.M., Wanders, R.J., and Waterham, H.R. (1999) Identification and Characterization of Three Novel Missense Mutations in Mevalonate Kinase cDNA Causing Mevalonic Aciduria, a Disorder of Isoprene Biosynthesis, Hum. Mol. Genet. 8, 1523–1528.PubMedCrossRefGoogle Scholar
  248. 248.
    Houten, S.M., Kuis, W., Duran, M., de Koning, T.J., van Royen-Kerkhof, A., Romeijn, G.J., Frenkel, J., Dorland, L., de Barse, M.M., Huijbers, W.A., et al. (1999) Mutations in MVK, Encoding Mevalonate Kinase, Cause Hyperimmunoglobulinaemia D and Periodic Fever Syndrome, Nat. Genet. 22, 175–177.PubMedCrossRefGoogle Scholar
  249. 249.
    Houten, S.M., Koster, J., Romeijn, G.J., Frenkel, J., Di Rocco, M., Caruso, U., Landrieu, P., Kelley, R.I., Kuis, W., Poll-The, B.T., et al. (2001) Organization of the Mevalonate Kinase (MVK) Gene and Identification of Novel Mutations Causing Mevalonic Aciduria and Hyperimmunoglobulinaemia D and Periodic Fever Syndrome, Eur. J. Hum. Genet. 9, 253–259.PubMedCrossRefGoogle Scholar
  250. 250.
    Hinson, D.D., Ross, R.M., Krisans, S., Shaw, J.L., Kozich, V., Rolland, M.O., Divry, P., Mancini, J., Hoffmann, G.F., and Gibson, K.M. (1999) Identification of a Mutation Cluster in Mevalonate Kinase Deficiency, Including a New Mutation in a Patient of Mennonite Ancestry, Am. J. Hum. Genet. 65, 327–335.PubMedCrossRefGoogle Scholar
  251. 251.
    Hinson, D.D., Chambliss, K.L., Hoffmann, G.F., Krisans, S., Keller, R.K., and Gibson, K.M. (1997) Identification of an Active Site Alanine in Mevalonate Kinase Through Characterization of a Novel Mutation in Mevalonate Kinase Deficiency, J. Biol. Chem. 272, 26756–26760.PubMedCrossRefGoogle Scholar
  252. 252.
    Frenkel, J., Houten, S.M., Waterham, H.R., Wanders, R.J., Rijkers, G.T., Duran, M., Kuijpers, T.W., van Luijk, W., Poll-The, B.T., and Kuis, W. (2001) Clinical and Molecular Variability in Childhood Periodic Fever with Hyperimmunoglobulinaemia D, Rheumatology 40, 579–584.PubMedCrossRefGoogle Scholar
  253. 253.
    Hoffmann, G.F., Charpentier, C., Mayatepek, E., Mancini, J., Leichsenring, M., Gibson, K.M., Divry, P., Hrebicek, M., Lehnert, W., Sartor, K., et al. (1993) Clinical and Biochemical Phenotype in 11 Patients with Mevalonic Aciduria, Pediatrics 91, 915–921.PubMedGoogle Scholar
  254. 254.
    Houten, S.M., Frenkel, J., Rijkers, G.T., Wanders, R.J., Kuis, W., and Waterham, H.R. (2002) Temperature Dependence of Mutant Mevalonate Kinase Activity as a Pathogenic Factor in Hyper-IgD and Periodic Fever Syndrome, Hum. Mol. Genet. 11, 3115–3124.PubMedCrossRefGoogle Scholar
  255. 255.
    Hoffmann, G., Gibson, K.M., Nyhan, W.L., and Sweetman, L. (1988) Mevalonic Aciduria: Pathobiochemical Effects of Mevalonate Kinase Deficiency on Cholesterol Metabolism in Intact Fibroblasts, J. Inherit. Metab. Dis. 11, 229–232.PubMedCrossRefGoogle Scholar
  256. 256.
    Gibson, K.M., Hoffmann, G., Schwall, A., Broock, R.L., Aramaki, S., Sweetman, L., Nyhan, W.L., Brandt, I.K., Wappner, R.S., Lehnert, W., and Trefz, F.H. (1990) 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Activity in Cultured Fibroblasts from Patients with Mevalonate Kinase Deficiency: Differential Response to Lipid Supplied by Fetal Bovine Serum in Tissue Culture Medium, J. Lipid Res. 31, 515–521.PubMedGoogle Scholar
  257. 257.
    Hubner, C., Hoffmann, G.F., Charpentier, C., Gibson, K.M., Finckh, B., Puhl, H., Lehr, H.A., and Kohlschutter, A. (1993) Decreased Plasma Ubiquinone-10 Concentration in Patients with Mevalonate Kinase Deficiency, Pediatr. Res. 34, 129–133.PubMedGoogle Scholar
  258. 258.
    Hoffmann, G.F., Wiesmann, U.N., Brendel, S., Keller, R.K., and Gibson, K.M. (1997) Regulatory Adaption of Isoprenoid Biosynthesis and the LDL Receptor Pathway in Fibroblasts from Patients with Mevalonate Kinase Deficiency, Pediatr. Res. 41, 541–546.PubMedGoogle Scholar
  259. 259.
    Houten, S.M., Schneiders, M.S., Wanders, R.J., and Waterham, H.R. (2003) Regulation of Isoprenoid/Cholesterol Biosynthesis in Cells from Mevalonate Kinase-Deficient Patients, J. Biol. Chem. 278, 5736–5743.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 2004

Authors and Affiliations

  1. 1.Department of Internal Medicine, C32 GHUniversity of IowaIowa City

Personalised recommendations