Skip to main content
Log in

Impact of in vivo glycation of LDL on platelet aggregation and monocyte chemotaxis in diabetic Psammomys obesus

  • Communications
  • Published:
Lipids

Abstract

Psammomys obesus (sand rat) is an appropriate model to highlight the development of hyperinsulinemia, insulin resistance, obesity, and diabetes. This animal species, with genetically predetermined diabetes, acquires non-insulin dependent diabetes mellitus when exposed to energy-rich diets. In the present study, we explored the possibility that glycation of LDL may occur in diabetes-prone P. obesus and affect platelet and macrophage functions. The glycation of LDL, isolated from diabetic animals, was significantly (P<0.05) higher (40%) than that of control animals. The incubation of platelets with glycated LDL enhanced the reactivity of platelets by 32–44% depending on the aggregating agents (thrombin, collagen, ADP). Furthermore, LDL derived from diabetic rats were chemotactic for normal monocytes and stimulated the incorporation of [14C]oleate into cellular cholesteryl esters. The enhancement of platelet aggregation and cholesterol esterification in monocytes may contribute toward the accelerated development of atherosclerotic cardiovascular disease in diabetic P. obesus animals. This study also illustrates the relevance of studying atherosclerosis in the P. obesus animal model, as it shows an increased tendency to develop dietinduced diabetes, which is associated with cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGE:

advanced glycation end products

apo:

apolipoprotein

References

  1. Timar-Banu, O., Beauregard, H., Tousignant, J., Lassonde, M., Harris, P., Viau, G., Vachon, L., Levy, E., and Abribat, T. (2001) Development of Noninvasive and Quantitative Methodologies for the Assessment of Chronic Ulcers and Scars in Humans, Wound Repair Regen 9, 123–132.

    Article  PubMed  CAS  Google Scholar 

  2. Knopp, R.H., Retzlaff, B., Aikawa, K., and Kahn, S.E. (2003) Management of Patients with Diabetic Hyperlipidemia, Am. J. Cardiol. 91, 24E-28E.

    Article  PubMed  CAS  Google Scholar 

  3. Sakaguchi, T., Yan, S.F., Yan, S.D., Belov, D., Rong, L.L., Sousa, M., Andrassy, M., Marso, S.P., Duda, S., Arnold, B., et al., (2003) Central Role of RAGE-Dependent Neointimal Expansion in Arterial Restenosis, J. Clin. Invest. 111, 959–972.

    Article  PubMed  CAS  Google Scholar 

  4. Vlassara, H., and Palace, M.R. (2002) Diabetes and Advanced Glycation End Products, J. Intern. Med. 251, 87–101.

    Article  PubMed  CAS  Google Scholar 

  5. Schleicher, E., Deufel, T., and Wieland, O.H. (1981) Nonenzymatic Glycosylation of Human Serum Lipoproteins. Elevated Epsilon-Lysine Glycosylated Low Density Lipoprotein in Diabetic Patients, FEBS Lett. 129, 1–4.

    Article  PubMed  CAS  Google Scholar 

  6. Mironova, M.A., Klein, R.L., Virella, G.T., and Lopes-Virella, M.F. (2000) Anti-modified LDL Antibodies, LDL-Containing Immune Complexes, and Susceptibility of LDL to in vitro Oxidation in Patients with Type 2 Diabetes, Diabetes 49, 1033–1041.

    PubMed  CAS  Google Scholar 

  7. Klein, R.L., Laimins, M., and Lopes-Virella, M.F. (1995) Isolation, Characterization, and Metabolism of the Glycated and Nonglycated Subfractions of Low-Density Lipoproteins Isolated from Type I Diabetic Patients and Nondiabetic Subjects, Diabetes 44, 1093–1098.

    PubMed  CAS  Google Scholar 

  8. Wang, X., Bucala, R., and Milne, R. (1998) Epitopes Close to the Apolipoprotein B Low Density Lipoprotein Receptor-Binding Site Are Modified by Advanced Glycation End Products, Proc. Natl. Acad. Sci. USA 95, 7643–7647.

    Article  PubMed  CAS  Google Scholar 

  9. Zimmermann, R., Panzenbock, U., Wintersperger, A., Levak-Frank, S., Graier, W., Glatter, O., Fritz, G., Kostner, G.M., and Zechner, R. (2001) Lipoprotein Lipase Mediates the Uptake of Glycated LDL in Fibroblasts, Endothelial Cells, and Macrophages, Diabetes 50, 1643–1653.

    PubMed  CAS  Google Scholar 

  10. Bucala, R., Makita, Z., Vega, G., Grundy, S., Koschinsky, T., Cerami, A., and Vlassara, H. (1994) Modification of Low Density Lipoprotein by Advanced Glycation End Products Contributes to the Dyslipidemia of Diabetes and Renal Insufficiency, Proc. Natl. Acad. Sci. USA 91, 9441–9445.

    Article  PubMed  CAS  Google Scholar 

  11. Lopes-Virella, M.F., Klein, R.L., Lyons, T.J., Stevenson, H.C., and Witztum, J.L. (1988) Glycosylation of Low-Density Lipoprotein Enhances Cholesteryl Ester Synthesis in Human Monocyte-Derived Macrophages, Diabetes 37, 550–557.

    PubMed  CAS  Google Scholar 

  12. Bellomo, G., Maggi, E., Poli, M., Agosta, F.G., Bollati, P., and Finardi, G. (1995) Autoantibodies Against Oxidatively Modified Low-Density Lipoproteins in NIDDM, Diabetes 44, 60–66.

    PubMed  CAS  Google Scholar 

  13. Witztum, J.L., Steinbrecher, U.P., Kesaniemi, Y.A., and Fisher, M. (1984) Autoantibodies to Glucosylated Proteins in the Plasma of Patients with Diabetes Mellitus, Proc. Natl. Acad. Sci. USA 81, 3204–3208.

    Article  PubMed  CAS  Google Scholar 

  14. Kalderon, B., Adler, J.H., Levy, E., and Gutman, A. (1983) Lipogenesis in the Sand Rat (Psammomys obesus), Am. J. Physiol. 244, E480-E486.

    PubMed  CAS  Google Scholar 

  15. Zoltowska, M., St-Louis, J., Ziv, E., Sicotte, B., Delvin, E., and Levy, E. (2003) Vascular Responses to α-Adrenergic Stimulation and Depolarization Are Enhanced in Insulin Resistant and Diabetic Psammomys obesus, Can. J. Physiol. Pharmacol. 81, 704–710.

    Article  PubMed  CAS  Google Scholar 

  16. Zoltowska, M., Ziv, E., Delvin, E., Stan, S., Bar-On, H., Kalman, R., and Levy, E. (2001) Circulating Lipoproteins and Hepatic Sterol Metabolism in Psammomys obesus Prone to Obesity, Hyperglycemia and Hyperinsulinemia, Atherosclerosis 157, 85–96.

    Article  PubMed  CAS  Google Scholar 

  17. Suc, I., Brunet, S., Mitchell, G., Rivard, G.E., and Levy, E. (2003) Oxidative Tyrosylation of High Density Lipoproteins Impairs Cholesterol Efflux from Mouse J774 Macrophages: Role of Scavenger Receptors, Classes A and B, J. Cell Sci. 116, 89–99.

    Article  PubMed  CAS  Google Scholar 

  18. Levy, E., Thibault, L., Roy, C.C., Letarte, J., Lambert, M., and Seidman, E.G. (1990) Mechanisms of Hypercholesterolaemia in Glycogen Storage Disease Type I: Defective Metabolism of Low Density Lipoprotein in Cultured Skin Fibroblasts, Eur. J. Clin. Invest. 20 253–260.

    PubMed  CAS  Google Scholar 

  19. Lyons, T.J., Baynes, J.W., Patrick, J.S., Colwell, J.A., and Lopes-Virella, M.F. (1986) Glycosylation of Low Density Lipoprotein in Patients with Type 1 (insulin-dependent) Diabetes: Correlations with Other Parameters of Glycaemic Control, Diabetologia 29, 685–689.

    Article  PubMed  CAS  Google Scholar 

  20. Keren, P., George, J., Keren, G., and Harats, D. (2001) Non-Obese Diabetic (NOD) Mice Exhibit an Increased Cellular Immune Response to Glycated-LDL but Are Resistant to High Fat Diet Induced Atherosclerosis, Atherosclerosis 157, 285–292.

    Article  PubMed  CAS  Google Scholar 

  21. Watanabe, J., Wohltmann, H.J., Klein, R.L., Colwell, J.A., and Lopes-Virella, M.F. (1988) Enhancement of Platelet Aggregation by Low-Density Lipoproteins from IDDM Patients, Diabetes 37, 1652–1657.

    PubMed  CAS  Google Scholar 

  22. Quinn, M.T., Parthasarathy, S., Fong, L.G., and Steinberg, D. (1987) Oxidatively Modified Low Density Lipoproteins: A Potential Role in Recruitment and Retention of Monocyte/Macrophages During Atherogenesis, Proc. Natl. Acad. Sci. USA 84, 2995–2998.

    Article  PubMed  CAS  Google Scholar 

  23. Marcil, V., Delvin, E., Seidman, E., Poitras, L., Zoltowska, M., Garofalo, C., and Levy, E. (2002) Modulation of Lipid Synthesis, Apolipoprotein Biogenesis, and Lipoprotein Assembly by Butyrate, Am. J. Physiol. Gastrointest. Liver Physiol. 283, G340-G346.

    PubMed  CAS  Google Scholar 

  24. Stitt, A.W., Jenkins, A.J., and Cooper, M.E. (2002) Advanced Glycation End Products and Diabetic Complications, Expert. Opin. Investig. Drugs. 11, 1205–1223.

    Article  PubMed  Google Scholar 

  25. Bucala, R., Model, P., and Cerami, A. (1984) Modification of DNA by Reducing Sugars: A Possible Mechanism for Nucleic Acid Aging and Age-Related Dysfunction in Gene Expression, Proc. Natl. Acad. Sci. USA 81, 105–109.

    Article  PubMed  CAS  Google Scholar 

  26. Howard, E.W., Benton, R., Ahern-Moore, J., and Tomasek, J.J. (1996) Cellular Contraction of Collagen Lattices Is Inhibited by Nonenzymatic Glycation, Exp. Cell. Res. 228, 132–137.

    Article  PubMed  CAS  Google Scholar 

  27. Paget, C., Lecomte, M., Ruggiero, D., Wiernsperger, N., and Lagarde, M. (1998) Modification of Enzymatic Antioxidants in Retinal Microvascular Cells by Glucose or Advanced Glycation End Products, Free Radic. Biol. Med. 25, 121–129.

    Article  PubMed  CAS  Google Scholar 

  28. Giardino, I., Edelstein, D., and Brownlee, M. (1994) Nonenzymatic Glycosylation in vitro and in Bovine Endothelial Cells Alters Basic Fibroblast Growth Factor Activity. A Model for Intracellular Glycosylation in Diabetes, J. Clin. Invest. 94, 110–117.

    PubMed  CAS  Google Scholar 

  29. Stitt, A.W., Li, Y.M., Gardiner, T.A., Bucala, R., Archer, D.B., and Vlassara, H. (1997) Advanced Glycation End Products (AGEs) Co-localize with AGE Receptors in the Retinal Vasculature of Diabetic and of AGE-Infused Rats, Am. J. Pathol. 150, 523–531.

    PubMed  CAS  Google Scholar 

  30. Stitt, A.W., He, C., Friedman, S., Scher, L., Rossi, P., Ong L., Founds, H., Li, Y.M., Bucala, R., and Vlassara, H. (1997) Elevated AGE-Modified ApoB in Sera of Euglycemic, Normolipidemic Patients with Atherosclerosis: Relationship to Tissue AGEs, Mol. Med. 3, 617–627.

    PubMed  CAS  Google Scholar 

  31. Hoff, H.F., Whitaker, T.E., and O'Neil, J. (1992) Oxidation of Low Density Lipoprotein Leads to Particle Aggregation and Altered Macrophage Recognition, J. Biol. Chem. 267, 602–609.

    PubMed  CAS  Google Scholar 

  32. The Diabetes Control and Complications Trial Research Group (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus, N. Engl. J. Med. 329, 977–986.

    Article  Google Scholar 

  33. Ferretti, G., Rabini, R.A., Bacchetti, T., Vignini, A., Salvolini, E., Ravaglia, F., Curatola, G., and Mazzanti, L. (2002) Glycated Low Density Lipoproteins Modify Platelet Properties: A Compositional and Functional Study, J. Clin. Endocrinol. Metab. 87, 2180–2184.

    Article  PubMed  CAS  Google Scholar 

  34. Curtiss, L.K., and Witztum, J.L. (1983) A Novel Method for Generating Region-Specific Monoclonal Antibodies to Modified Proteins. Application to the Identification of Human Glucosylated Low Density Lipoproteins, J. Clin. Invest. 72, 1427–1438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile Levy.

About this article

Cite this article

Zoltowska, M., Delvin, E., Ziv, E. et al. Impact of in vivo glycation of LDL on platelet aggregation and monocyte chemotaxis in diabetic Psammomys obesus . Lipids 39, 81–85 (2004). https://doi.org/10.1007/s11745-004-1205-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1205-7

Keywords

Navigation