Skip to main content
Log in

Alterations of fatty acid metabolism and membrane fluidity in peroxisome-defective mutant ZP102 cells

  • Articles
  • Published:
Lipids

Abstract

We investigated lipid composition and FA metabolism in Chinese hamster ovary (CHO-K1) cells and Pex5-mutated CHO-K1 (ZP102) cells to clarify the biochemical bases of peroxisome biogenesis disorders (PBD). ZP102 cells have defective peroxisomes and exhibit impairments of peroxisomal β-oxidation of FA and plasmalogen biosynthesis. In addition, we identified FA metabolic alterations in the synthesis of several classes of lipids in ZP102 cells. The concentration of FFA in ZP102 cells was twice that in CHO-K1 cells, but methyl esters and TAG were decreased in ZP102 cells in comparison with control cells. Also, ceramide monohexoside (CMH) concentration with ZP102 cells was significantly increased compared with the control cells. The FA molecular species, particularly the saturated to unsaturated ratios, of individual lipids also differed between the two cell types. The rate of incorporation of [14C]-labeled saturated acids into sphingomyelin (SM) and CMH in ZP102 cells was lugher than that in CHO-K1 cells. Lignoceric acid incorporated into cells was predominantly utilized for the synthesis of SM at 24 h after removal of [14C] lignoceric acid from the culture medium. ZP102 cells showed higher fluorescence anisotropy of 1,3,5-diphenylhexatriene, corresponding to lower membrane mobility than in CHO-K1 cells. In particular, alteration of lipid metabolism by a Pex5 mutation enhanced metabolism of saturated FA and sphingolipids. This may be related to the reduced membrane fluidity of ZP102 cells, which has been implicated in the dysfunction of membrane-linked processes in PBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CE:

cholesterol ester(s)

CHO-K1 cells:

Chinese hamster ovary K1 cells

CMH:

ceramide monohexoside

CNS:

central nervous system

DHAP:

dihydroxyacetone phosphate

DPH:

1,6-diphenyl-1,3,5-hexatriene

GlcT:

ceramide glucosyltransferase

PBD:

peroxisome biogenesis disorders

PTS-1:

peroxisome targeting signal-1

SM:

sphingomyelin

VLCFA:

very long chain FA

Z65 cells:

Pex2-mutated CHO-K1 cells

ZP102 cells:

Pex5-mutated CHO-K1 cells

References

  1. Gould, S.J., Raymond, G.V., and Valle, D. (2001) The Peroxisome Biogenesis Disorders, in The Metabolic and Molecular Bases of Inherited Disease (Scriver, B.V.S., Beaudet, V.S., Sly, W., Valle, D., Childs, B., Kinzler, K., and Vogelstein, B., eds.), pp. 3181–3217, McGraw-Hill, New York.

    Google Scholar 

  2. Moser, A.B., Kreiter, N., Bezman, L., Lu, S., Raymond, G.V., Naidu, S., and Moser, H.W. (1999) Plasma Very Long Chain Fatty Acids in 3,000 Peroxisome Disease Patients and 29,000 Controls, Ann. Neurol. 45, 100–110.

    Article  PubMed  CAS  Google Scholar 

  3. Powers, J.M., Tummons, R.C., Caviness, V.S., Jr., Moser, A.B., and Moser, H.W. (1989) Structural and Chemical Alterations in the Cerebral Maldevelopment of Fetal Cerebro-hepato-renal (Zellweger) Syndrome, J. Neuropathol. Exp. Neurol. 48, 270–289.

    PubMed  CAS  Google Scholar 

  4. Baes, M., Gressens, P., Baumgart, E., Carmeliet, P. Casteels, M., Fransen, M., Evrard, P., Fahimi, D., Declercq, P.E., Collen, D., et al. (1997) A Mouse Model for Zellweger Syndrome, Nature Genet. 17, 49–57.

    Article  PubMed  CAS  Google Scholar 

  5. Faust, P.L., and Hatten, M.E. (1997) Targeted Deletion of the PEX2 Peroxisome Assembly Gene in Mice Provides a Model for Zellweger Syndrome, a Human Neuronal Migration Disorder, J. Cell Biol. 139, 1293–1305.

    Article  PubMed  CAS  Google Scholar 

  6. Huyghe, S., Casteels, M., Janssen, A., Meulders, L., Mannaerts, G.P., Declercq, P.E., van Veldhoven, P.P., and Baes, M. (2001) Prenatal and Postnatal Development of Peroxisomal Lipid-Metabolizing Pathways in the Mouse, Biochem. J. 353, 673–680.

    Article  PubMed  CAS  Google Scholar 

  7. Baes, M., Gressens, P., Huyghe, S., De N.K., Qi, C., Jia, Y., Mannaerts, G.P., Evrard, P., Van, V.P., Declercq, P.E., and Reddy, J.K. (2002) The Neuronal Migration Defect in Mice with Zellweger Syndrome (Pex5 knockout) Is Not Caused by the Inactivity of Peroxisomal β-Oxidation, J. Neuropathol. Exp. Neurol. 61, 368–374.

    PubMed  CAS  Google Scholar 

  8. Tatsumi, K., Saito, M., Lin, B., Iwamori, M., Ichiseki, H., Shimozawa, N., Kamoshita, S., Igarashi, T., and Sakakihara, Y. (2001) Enhanced Expression of a-Series Gangliosides in Fibroblasts of Patients with Peroxisome Biogenesis Disorders, Biochim. Biophys. Acta 1535, 285–293.

    PubMed  CAS  Google Scholar 

  9. Saito, M., Iwamori, M., Lin, B., Oka, A., Fujiki, Y., Shimozawa, N., Kamoshita, S., Yanagisawa, M., and Sakakihara, Y. (1999) Accumulation of Glycolipids in Mutant Chinese Hamster Ovary Cells (Z65) with Defective Peroxisomal Assembly and Comparison of the Metabolic Rate of Glycosphingolipids Between Z65 Cells and Wild-type CHO-K1 Cells, Biochim. Biophys. Acta 1438, 55–62.

    PubMed  CAS  Google Scholar 

  10. Saito, M., Fukushima, Y., Tatsumi, K., Bei, L., Fujiki, Y., Iwamori, M., Igarashi, T., and Sakakihara, Y. (2002) Molecular Cloning of Chinese Hamster Ceramide Glucosyltransferase and Its Enhanced Expression in Peroxisome-Defective Mutant Z65 Cells, Arch. Biochem. Biophys. 403, 171–178.

    Article  PubMed  CAS  Google Scholar 

  11. Svennerholm, L., Rynmark, B.M., Vilbergsson, G., Fredman, P., Gottfries, J., Mansson, J.E., and Percy, A. (1991) Gangliosides in Human Fetal Brain, J. Neurochem. 56, 1763–1768.

    Article  PubMed  CAS  Google Scholar 

  12. Uemura, K., Sugiyama, E., and Taketomi, T. (1991) Effects of an Inhibitor of Glycosylceramide Synthase on Glycosphingolipid Synthesis and Neurite Outgrowth in Murine Neuroblastoma Cell Lines, J. Biochem. 110, 96–102.

    PubMed  CAS  Google Scholar 

  13. Tettamanti, G., and Riboni, L. (1993), Gangliosides and Modulation of the Function of Neural Cells, Adv. Lipid Res. 25, 235–267.

    PubMed  CAS  Google Scholar 

  14. Hannun, Y.A. (1996) Functions of Ceramide in Coordinating Cellular Responses to Stress, Science 274, 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  15. Tsukamoto, T., Bogaki, A., Okumoto, K., Tateishi, K., Fujiki, Y., Shimozawa, N., Suzuki, Y., Kondo, N., and Osumi, T. (1997) Isolation of a New Peroxisome-Deficient CHO Cell Mutant Defective in Peroxisome Targeting Signal-1 Receptor, Biochem. Biophys. Res. Commun. 230, 402–406.

    Article  PubMed  CAS  Google Scholar 

  16. Dodt, G., Braverman, N., Wong, C., Moser, A., Moser, H.W., Watkins, P., Valle, D., and Gould, S.J. (1995) Mutations in the PTS1 Receptor Gene, PXR1, Define Complementation Group 2 of the Peroxisome Biogenesis Disorders, Nature Genet, 9, 115–125.

    Article  PubMed  CAS  Google Scholar 

  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  18. Kawato, S., Jr., Kinosita, K., and Ikegami, A. (1977) Dynamic Structure of Lipid Bilayers Studied by Nanosecond Fluorescence Techniques, Biochemistry 16, 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  19. Shinitzky, M., and Barenholz, Y. (1978) Fluidity Parameters of Lipid Regions Determined by Fluorescence Polarization, Biochim. Biophys. Acta 515, 367–394.

    PubMed  CAS  Google Scholar 

  20. Lehner, R., and Kuksis, A. (1996) Biosynthesis of Triacylglycerols, Prog. Lipid Res. 35, 169–201.

    Article  PubMed  CAS  Google Scholar 

  21. Hajra, A.K., Larkins, L.K., Das, A.K., Hemati, N., Erickson, R.L., and MacDougald, O.A. (2000) Induction of the Peroxisomal Glycerolipid-Synthesizing Enzymes During Differentiation of 3T3-L1 Adipocytes. Role in Triacylglycerol Synthesis, J. Biol. Chem. 275, 9441–9446.

    Article  PubMed  CAS  Google Scholar 

  22. Rustan, A.C., Nossen, J.O., Christiansen, E.N., and Drevon, C.A. (1988) Eicosapentaenoic Acid Reduces Hepatic Synthesis and Secretion of Triacylclycerol by Decreasing the Activity of Acyl-Coenzyme A:1,2-Diacylglycerol Acyltransferase, J. Lipid Res. 29, 1417–1426.

    PubMed  CAS  Google Scholar 

  23. Strum-Ordin, R.B., Adkins-Finke, W.L., Blake, W.L., Phinney, S.D., and Clarke, S.D. (1987) Modification of the Fatty Acid Composition of Membrane Phospholipids in Hepatocyte Monolayers with n−3, n−6, and n−9 Fatty Acids, Biochim. Biophys. Acta 921, 378–391.

    Google Scholar 

  24. Brown, F.R., III., Chen, W.W., Kirschner, D.A., Frayer, K.L., Powers, J.M., Moser, A.B., and Moser, H.W. (1983) Myelin Membranes from Adrenoleukodystrophy Brain White Matter—Biochemical Properties, J. Neurochem. 41, 341–348.

    Article  PubMed  CAS  Google Scholar 

  25. Knazek, R.A., Rizzo, W.B., Schulman, J.D., and Dave, J.R. (1983) Membrane Microviscosity Is Increased in the Erythrocytes of Patients with Adrenoleukodystrophy and Adrenomyeloneuropathy, J. Clin. Invest. 72, 245–248.

    PubMed  CAS  Google Scholar 

  26. Whitcomb, R.W., Linehan, W.M., and Knazek, R.A. (1988) Effects of Long-Chain- Saturated Fatty Acids on Membrane Microviscosity and Adrenocorticotropin Responsiveness of Human Adrenocortical Cells in vitro. J. Clin. Invest. 81, 185–188.

    PubMed  CAS  Google Scholar 

  27. Ho, J.K., Moser, H., Kishimoto, Y., and Hamilton, J.A. (1995) Interactions of a Very Long Cham Fatty Acid with Model Membranes and Serum Albumin. Implications for the Pathogenesis of Adrenoleukodystrophy, J. Clin. Invest. 96, 1455–1463.

    Article  PubMed  CAS  Google Scholar 

  28. Igal, R.A., Caviglia, J.M., de Gomez Dumm, I.N., and Coleman, R.A. (2000) Diacylglycerol Generated in CHO Cell Plasma Membrane by Phospholipase C Is Used for Triacylglycerol Synthesis, J. Lipid Res. 42, 88–95.

    Google Scholar 

  29. Igal, R.A., and Coleman, R.A. (1998) Neutral Lipid Storage Disease: A Genetic Disorder with Abnormalities in the Regulation of Phospholipid Metabolism, J. Lipid. Res. 39, 31–43.

    PubMed  CAS  Google Scholar 

  30. Igal, R.A., and Coleman, R.A. (1998) Acylglycerol Recycling from Triacylglycerol to Phospholipid, Not Lipase Activity, Is Defective in Neutral Lipid Storage Disease Fibroblasts, J. Biol. Chem. 271, 16644–16651.

    Google Scholar 

  31. Ordway, R.W., Jr., Walsh, J.V., and Singer, J.J. (1989) Arachidonic Acid and Other Fatty Acids Directly Activate Potassium Channels in Smooth Muscle Cells, Science 244, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  32. Huang, J.M., Xian, H., and Bacaner, M. (1992) Long-Chain Fatty Acids Activate Calcium Channels in Ventricular Myocytes, Proc. Nat. Acad. Sci. USA 89, 6452–6456.

    Article  PubMed  CAS  Google Scholar 

  33. Nishizuka, Y. (1992) Intracellular Singaling by Hydrolysis of Phospholipids and Activation of Protein Kinase C, Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  34. Hamilton, J.A., Civelek, V.N., Kamp, F., Tornheim, K., and Corkey, B.E. (1994) Changes in Internal pH Caused by Movement of Fatty Acids into and out of Clonal Pancreatic β-Cells (HIT), J. Biol. Chem. 269, 20852–20856.

    PubMed  CAS  Google Scholar 

  35. Hermetter, A., Rainer, B., Ivessa, E., Kalb, E., Loidl, J., Roscher, A., and Paltauf, F. (1989) Influence of Plasmalogen Deficiency on the Membrane Fluidity of Human Skin Fibroblasts: A Fluorescence Anisotrophy Study, Biochim. Biophys. Acta 978, 151–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiko Saito.

About this article

Cite this article

Nagura, M., Saito, M., Iwamori, M. et al. Alterations of fatty acid metabolism and membrane fluidity in peroxisome-defective mutant ZP102 cells. Lipids 39, 43–50 (2004). https://doi.org/10.1007/s11745-004-1200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1200-z

Keywords

Navigation