Skip to main content
Log in

Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue

  • Articles
  • Published:
Lipids

Abstract

The inhibitory effects of 1,3-diacylglycerol (DAG) on diet-induced lipid accumulation in liver and abdominal adipose tissue of rats were investigated in the present study. Male Sprague-Dawley rats were given free access to diets containing 7 wt% TAG (low TAG), 20 wt% TAG (high TAG), or 20 wt% DAG (high DAG), respectively, for 8 wk. The body weight of rats in the 20% high-TAG group increased significantly, and the weights of their abdominal adipose tissue and liver also showed a significant increase compared with rats in the low-TAG group. However, the high-DAG diet resulted in both a significant reduction in body weight gain (with a decrease of 70.5%) and an increase in the ratio of abdominal fat to body weight (by 127%) compared with the high-TAG diet. As well, the liver TAG and serum TAG levels of the high-DAG group were significantly lower than those of the high-IAG group. These effects were associated with up-regulation of acyl-CoA carnitine acyltransferase (ACAT) and down-regulation of acyl-CoA DAG acyltransferase (DGAT) in the liver. However, no significant difference was observed in the activities of alanine aminotransferase and aspartate aminotransferase among the groups (P>0.05). The present results indicate that dietary DAG reduced fat accumulation in viscera and body, and these effects may be involved with up-regulation of ACAT and down-regulation of DGAT in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACAT:

acyl-CoA carnitine acyltransferase

ACO:

acyl-CoA oxidase

ACS:

acyl-CoA synthase

ALT:

alanine aminotransferase

AST:

aspartate aminotransferase

DGAT:

acyl-CoA DAG acyltransferase

MGAT:

MAG acyltransferase

PPAR:

peroxisome proliferator-activated receptor(s)

TC:

total cholesterol

References

  1. Lakka, H.M., Lakka, T.A., Tuomilehto, J., and Salonen, J.T. (2002) Abdominal Obesity Is Associated with Increased Risk of Acute Coronary Events in Men, Eur. Heart J. 23, 706–713.

    Article  PubMed  Google Scholar 

  2. Okosun, I.S., Prewitt, T.E., and Cooper, R.S. (1999) Abdominal Obesity in the United States: Prevalence and Attributable Risk of Hypertension, J. Hum. Hypertens. 13, 425–430.

    Article  PubMed  CAS  Google Scholar 

  3. Seidell, J.G., Verschuren, W.M., Van Leer, E.M., and Kromhout, D. (1996) Overweight. Underweight and Mortalty: A Prospective Study of 48.287 Men and Women, Arch. Intern. Med., 156, 958–963.

    Article  PubMed  CAS  Google Scholar 

  4. Matsuzawa, Y., Nakamura, T., Shimomura, I., and Kotani, K. (1995) Visceral Fat Accumulation and Cardiovascular Disease, Obes. Res., 3, 645–647.

    Google Scholar 

  5. Kannel, W.B., Cupples, L.A., Ramaswami, R., Stokes, J., 3rd, Kreger, B.E., and Higgins, M. (1991) Regional Obesity and Risk of Cardiovascular Diseases: The Framingham Study, J. Clin. Epidemiol. 44, 183–190.

    Article  PubMed  CAS  Google Scholar 

  6. Bray, G.A., and Tartaglia, L.A. (2000) Medicinal Strategies in the Treatment of Obesity, Nature, 404, 672–677.

    PubMed  CAS  Google Scholar 

  7. Greenberg, I., Chang, S., and Blackburn, G.L. (1999) Nonpharmacologic and Pharmacologic Management of Weight Gain, J. Clin. Psychiatry 60, 31–36.

    PubMed  Google Scholar 

  8. Scheen, A.J., and Lefebvre, P.J. (1999) Pharmacological Treatment of Obesity: Present Status, Int J. Obes. Relat. Metab. Disord. 23, 47–53.

    Article  PubMed  CAS  Google Scholar 

  9. Hara, K., Onizawa, K., Honda, H., Otsuji, K., Ide, T., and Murata, M. (1993) Dietary Diacylglycerol-Dependent Reduction in Serum Triacylglycerol Concentration in Rats, Ann. Nutr. Metab. 37, 185–191.

    PubMed  CAS  Google Scholar 

  10. Murata, M., Hara, K., and Ide, T. (1994) Alteration by Diacylglycerols of the Transport and Fatty Acid Composition of Lymph Chylomicrons in Rats, Biosci. Biotechnol. Biochem. 58, 1416–1419.

    Article  Google Scholar 

  11. Nagao, T., Watanabe, H., Goto, N., Onizawa, K., Taguchi, H., Matsuo, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men in a Double-Blind Controlled Trial, J. Nutr. 130, 792–797.

    PubMed  CAS  Google Scholar 

  12. Sugimoto, T., Kimura, T., Fukuda, H., and Iritani, N. (2003) Comparisons of Glucose and Lipid Metabolism in Rats Fed Diacylglycerol and Triacylglycerol Oils, J. Nutr. Sci. Vitaminol. 49, 47–55.

    PubMed  CAS  Google Scholar 

  13. Hase, T., Mizuno, T., Onizawa, K., Kawasaki, K., Nakagiri, H., Komine, Y., Murase, T., Meguro, S., Tokimitsu, I., Shimasaki, H., and Itakura, H. (2001) Effects of α-Linolenic Acid-rich Diacylglycerol on Diet-Induced Obesity in Mice, J. Oleo Sci. 50, 701–710.

    CAS  Google Scholar 

  14. Murase, T., Mizuno, T., Omachi, T., Onizawa, K., Komine, Y., Kondo, H., Hase, T., and Tokimitsu, I. (2001) Dietary Diacylglycerol Suppresses High Fat and High Sucrose Diet-Induced Body Fat Accumulation in C57BL/6J Mice, J. Lipid Res. 42, 372–378.

    PubMed  CAS  Google Scholar 

  15. Murase, T., Nagasawa, A., Suzuki, J., Wakisaka, T., Hase, T., and Tokimitsu, I. (2002) Dietary α-Linolenic Acid-rich Diacylglycerols Reduce Body Weight Gain Accompanying the Stimulation of Intestinal β-Oxidation and Related Gene Expressions in 57BL/KsJ-db/db Mice, J. Nutr. 132, 3018–3022.

    PubMed  CAS  Google Scholar 

  16. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Sample Method for the Isolation and Purification of Total Lipids from Animal Tissue, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  17. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method for Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  18. Bartlett, G.R. (1959) Phosphorus Assay in Column Chromatography, J. Biol. Chem., 234, 466–468.

    PubMed  CAS  Google Scholar 

  19. Middleton, C.K., Kazala, E.C., Lozeman, F.J., Hurly, T.A., Mir, P.S., Bailey, D.R.C., Jones, S.D.M., and Weselake, R.J. (1998) Evaluation of Diacylglycerol Acyltransferase as an Indicator of Intramuscular Fat Content in Beef Cattle, Can. J. Anim. Sci. 78 265–270.

    Article  CAS  Google Scholar 

  20. Lozeman, F.J., Middleton, C.K., Deng, J., Kazala, E.C., Verhaege, C., Mir, P.S., Laroche, A., Bailey, D.R.C., and Weselake, R.J. (2001) Characterization of Microsomal Diacylglycerol Acyltransferase Activity from Bovine Adipose and Muscle Tissue, Comp. Biochem. Physiol. Biochem. Mol. Biol. 130, 105–115.

    Article  CAS  Google Scholar 

  21. Bieber, L.L., Abraham, T., and Helmrath, T. (1972) A Rapid Spectrophotometric Assay for Carnitine Palmitoyltransferase, Anal. Biochem. 50, 509–518.

    Article  PubMed  CAS  Google Scholar 

  22. Couillard, C., Bergeron, N., Prudhomme, D., Bergeron, J., Tremblay, A., Bouchard, C., Mauriege, P., and Despres, J.P. (1998) Postprandial Triacylglycerol Response in Visceral Obesity in Men, Diabetes 47, 953–960.

    PubMed  CAS  Google Scholar 

  23. Mekki, N., Christofilis, M.A., Charbonnier, M., Atlan-Gepne, C., Defoort, C., and Juhel, C. (1999) Influence of Obesity and Body Fat Distribution on Postprandial Lipemia and Triacylglycerol-rich Lipoproteins in Adult Women, J. Clin. Endocrinol. Metab. 84, 184–191.

    Article  PubMed  CAS  Google Scholar 

  24. Yanagizawa, Y., Kawabata, T., Tanaka, O., Kawakami, M., Hasegawa, K., and Kagawa, Y. (2003) Improvement in Blood Lipid Levels by Dietary sn-1,3-Diacylglycerol in Young Women with Variants of Lipid Transporters 54T-FABP2 and −493g-MTP. Biochem. Biophys. Res. Commun. 302, 743–748.

    Article  CAS  Google Scholar 

  25. Gavrilova, O., Martin, H., Matsusue, K., Jaime, J.C., Johnson, L., Dietz, K.R., Nicol, C.J., Vinson, C., Gonzalez, F.J., and Reitman, M.L. (2003) Liver Contributes to Hepatic Steatosis, Triglyceride Clearance, and Regulation of Body Fat Mass, J. Biol. Chem. 278, 34268–34276.

    Article  PubMed  CAS  Google Scholar 

  26. Bierbach, H. (1983) Triacylglycerol Biosynthesis in Human Small Intestinal Mucosa. Acyl-CoA: Monoacylglycerol Acyltransferase, Digestion 28, 138–147.

    Article  PubMed  CAS  Google Scholar 

  27. Zammit, V.A. (1996) Role of Insulin in Hepatic Fatty Acid Partitioning: Emerging Concepts, Biochem. J. 314, 1–14.

    PubMed  CAS  Google Scholar 

  28. Yang, L.Y., Kuksis, A., Myher, J.L., and Steiner, G. (1996) Contribution of de novo Fatty Acid Synthesis to Very Low-Density Lipoprotein Triacylglycerols: Evidence from Mass Isotopomer Distribution Analysis of Fatty Acids Synthesized from [2H6] Ethanol, J. Lipid Res., 37, 262–274.

    PubMed  CAS  Google Scholar 

  29. Owen, M.R., Corstorphine, C.C., and Zammit, V.A. (1997) Overt and Latent Activities of Diacylglycerol Acytransferase in Rat Liver Microsomes: Possible Roles in Very-Low-Density Lipoprotein Triacylglycerol Secretion, Biochem. J. 323, 17–21.

    PubMed  CAS  Google Scholar 

  30. Lehner, R., and Kuksis, A. (1996) Biosynthesis of Triacylglycerols. Prog. Lipid Res. 35, 69–201

    Article  Google Scholar 

  31. Dircks, L., and Sul, H.S. (1999) Acyltransferases of de novo Glycerophospholipid Biosynthesis, J. Lipid Res. 38, 461–479.

    Article  CAS  Google Scholar 

  32. Murase, T., Aoki, M., Wakisaka, T., Hase, T., and Tokimitsu, I. (2002) Anti-obesity Effect of Dietary Diacylglycerol in C57BL/6J Mice: Dietary Diacylglycerol Stimulates Intestinal Lipid Metabolism, J. Lipid Res. 43, 1312–1319.

    PubMed  CAS  Google Scholar 

  33. Murata, M., Ide, T., and Hara, K. (1997) Reciprocal Responses to Dietary Diacylglycerol of Hepatic Enzymes of Fatty Acid Synthesis and Oxidation in the Rat, Br. J. Nutr. 77, 107–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Shi.

About this article

Cite this article

Meng, X., Zou, D., Shi, Z. et al. Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids 39, 37–41 (2004). https://doi.org/10.1007/s11745-004-1199-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1199-1

Keywords

Navigation