Skip to main content
Log in

Variations of trans octadecenoic acid in milk fat induced by feeding different starch-based diets to cows

  • Articles
  • Published:
Lipids

Abstract

The impact of starch sources differing in their velocities of ruminal degradation on the milk fat of dairy cows was studied. The animals received diets containing a slowly degradable (potatoes) or rapidly degradable (wheat) starch concentrate (40% of the dry matter) in a total mixed diet. Milk fat was the only animal performance factor affected: Cows produced significantly less milk fat when fed the wheat diet than the potato diet (−3.3 g/kg, −122 g/d; P<0.05). With the wheat diet, milk fat was poorer in short-chain FA and richer in unsaturated longchain FA, especially in trans octadecenoic acid (4.4 vs. 2.7% of the total FA, P<0.05). A very large increase in the isomer trans-10 18∶1 (+1.46% of the total FA) was observed. Because no difference in volatile FA concentrations in the rumen was revealed, the increase in trans octadecenoic acids, and particularly the isomer trans-10 18∶1, was associated with the larger postprandial drop in ruminal pH with wheat. Similar concentrate levels and FA profiles in both diets indicated that the decrease in milk fat was due to changes in the ruminal environment. Quicker degradation of wheat starch, and hence a greater drop in pH with this diet associated with the absence of any effect on volatile FA, strengthen the hypothesis developed in the literature of enzyme inhibition via increased levels of trans octadecenoic acids, especially the trans-10 isomer. Hence, milk fat can be decreased with rapidly degradable starch sources and not only with high levels of concentrates in the diet or added fat. More detailed work is necessary to elucidate the microorganisms involved and to determine whether metabolic pathways similar to those reported for high-concentrate diets are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IPE:

isopropyl esters

IFA:

trans FA

VFA:

volatile FA

References

  1. Willet, W.C., Stampfer, M.J., Manson, J.E., Colditz, G.A., Speizer, F.E., Rosner, B.A., Sampson, L.A., and Hennekens, C.A. (1993) Intake of trans Fatty Acids and Risk of Coronary Heart Disease Among Women, Lancet 341, 581–585.

    Article  Google Scholar 

  2. Kris-Etherton, P.M., Emken, E.A., Allison, D.B., Dietschy, J.M., Nicolosi, R.J., and Denke, M.A. (1995) Trans Fatty Acids and Coronary Heart Disease Risk, Am. J. Clin. Nutr. 62, 655S-707S.

    Google Scholar 

  3. Mensink, R.P., and Katan, M.B. (1990) Effect of Dietary trans Fatty Acids on High Density Lipoprotein Cholesterol Levels in Healthy Subjects, N. Engl. J. Med. 323, 439–445.

    Article  PubMed  CAS  Google Scholar 

  4. Judd, J.T., Clevidence, B.A., Muesing, R.A., Wittes, J., Sunkin, M.E., and Podezasy, J.J. (1994) Dietary trans Fatty Acids: Effects on Plasma Lipids and Lipoproteins of Healthy Men and Women, Am. J. Clin. Nutr. 59, 861–868.

    PubMed  CAS  Google Scholar 

  5. Ascherio, A., Hennekens, C.A., Buring, J.E., Master, C., Stampfer, M.J., and Willet, W.C. (1994) Trans-Fatty Acid Intake and Risk of Myocardial Infarction, Circulation 89, 94–101.

    PubMed  CAS  Google Scholar 

  6. Ledoux, M., Laloux, L., and Sauvant, D. (2000) Les isomères trans d'acides gras. Origines et présence dans l'alimentation, Sci. Aliments. 20, 393–411.

    CAS  Google Scholar 

  7. Wolff, R.L., Combe, N., Destaillats, F., Boué, C., Precht, D., Molketin, J., and Entressangles, B. (2000) Follow-Up of Δ4 to Δ16 trans-18∶1 Isomer Profile and Content in French Processed Foods Containing Partially Hydrogenated Vegetable Oils During the Period 1995–1999. Analytical and Nutritional Implications, Lipids 35, 815–825.

    Article  PubMed  CAS  Google Scholar 

  8. Rindsing, R.B., and Schultz, L.H. (1974) Effects of Abomasal Infusions of Safflower Oil or Elaidic Acid on Blood Lipids and Milk Fat in Dairy Cows, J. Dairy Sci. 57, 1459–1466.

    Google Scholar 

  9. Harfoot, C.G., and Hazlewood, G.P. (1997) Lipid Metabolism in the Rumen, in The Rumen Microbial Ecosystem (Hobson, P.N., ed.), pp. 382–426, Elsevier Applied Science, London.

    Google Scholar 

  10. Kalscheur, K.F., Teter, B.B., Piperova, L.S., and Erdman, R.A. (1997) Effect of Dietary Forage Concentration and Buffer Addition on Duodenal Flow of trans-C18∶1 Fatty Acids and Milk Fat Production in Dairy Cows, J. Dairy Sci. 80, 2104–2114.

    PubMed  CAS  Google Scholar 

  11. Kucuk, O., Hess, B.W., Ludden, P.A., and Rule, D.C. (2001) Effect of Forage: Concentrate Ratio on Ruminal Digestion and Duodenal Flow of Fatty Acids in Ewes, J. Anim. Sci. 79, 2233–2240.

    PubMed  CAS  Google Scholar 

  12. Griinari, J.M., and Bauman, D.E. (1999) Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Meat and Milk in Ruminants, in Advances in Conjugated Linoleic Acid Research (Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., and Nelson, G.J., eds.), Vol. 1, pp. 180–200, AOCS Press, Champaign.

    Google Scholar 

  13. Chilliard, Y., Ferlay, A., Mansbridge, R.M., and Doreau, M. (2000) Ruminant Milk Fat Plasticity: Nutritional Control of Saturated, Polyunsaturated, trans and Conjugated Fatty Acids, Ann. Zootech. 49, 181–205.

    Article  CAS  Google Scholar 

  14. Piperova, L.S., Sampugna, J., Teter, B.B., Kalscheur, K.F., Yurawecz, M.P., Youh, K.U., Morehouse, K.M., and Erdman, R.A. (2002) Duodenal and Milk trans Octadecenoic Acid and Conjugated Linoleic Acid Isomers Indicate That Postabsorptive Synthesis Is the Predominant Source of cis-9-CLA in Lactating Dairy Cows, J. Nutr. 132, 1235–1241.

    PubMed  CAS  Google Scholar 

  15. Van Soest, P.J. (1963) Ruminant Fat Metabolism with Particular Reference to Factors Affecting Low Milk Fat and Feed Efficiency. A Review, J. Dairy Sci. 46, 204–216.

    Google Scholar 

  16. Hoden, A., Coulon, J.B., and Faverdin, P. (1988) Alimentation des vaches laitières, in Alimentation des bovins, ovins et caprins (Jarrige, R., ed.), pp. 135–158, INRA, Paris.

    Google Scholar 

  17. Monteils, V., Jurjanz, S., Colin-Schoellen, O., Blanchart, G., and Laurent, F. (2002) Kinetics of Ruminal Degradation of Wheat and Potato Starches in Total Mixed Rations, J. Anim. Sci. 80, 235–241.

    PubMed  CAS  Google Scholar 

  18. Jarrige, R. (1988) Alimentation des bovins, ovins et caprins, 1st edn., 476 pp. INRA, Paris.

    Google Scholar 

  19. Gontier, E., Boussouel, N., Terrasse, C., Jannover, M., Ménard, M., Thomasset, B., and Bourgaud, F. (2000) Litchi chinensis Fatty Acid Diversity: Occurrence of the Unusual Cyclopropanic Fatty Acids, Biochem. Soc. Trans. 28, 578–580.

    Article  PubMed  CAS  Google Scholar 

  20. Jouany, J.P. (1982) Volatile Fatty Acid and Alcohol Determination in Digestive Contents, Silage Juices, Bacterial Cultures and Anaerobic Fermentor Contents, Sci. Aliments. 2, 131–144.

    CAS  Google Scholar 

  21. Wolff, R.L., and Fabien, R.J. (1989) L'extraction de la matière grasse de produits laitiers pour l'estérification subséquente des acides gras, Le Lait 69, 33–42.

    CAS  Google Scholar 

  22. Juaneda, P. (2002) Utilisation of Reversed-Phase High-Performance Liquid Chromatography as an Alternative to Silver-Ion Chromatography for the Separation of cis- and trans-C18∶1 Fatty Acid Isomers, J. Chromatogr. 954, 285–289.

    Article  CAS  Google Scholar 

  23. Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) SAS System for Mixed Models, 633 pp. SAS Institute Inc., Cary, NC.

    Google Scholar 

  24. Jurjanz, S., Colin-Schoellen, O., Gardeur, J.N., and Laurent, F. (1998) Alteration of Milk Fat by Variation in the Source and Amount of Starch in a Total Mixed Diet to Dairy Cows, J. Dairy Sci. 81, 2924–2933.

    PubMed  CAS  Google Scholar 

  25. Omwubuemeli, C., Huber, J.T., King, K.J., and Johnson, C.O. (1985) Nutritive Value of Potato Processing Wastes in Total Mixed Rations for Dairy Cattle, J. Dairy Sci. 68, 1207–1214.

    Google Scholar 

  26. Faldet, M.A., Bush, L.J., and Adams, G.D. (1986) Effect of Different Levels of Wheat in Concentrate Mixture on Production Responses of Lactating Dairy Cows Fed Sorghum Silage as the Only Forage, Oklahoma Anim. Sci. Res. Rep. 66–70.

  27. Herrera-Saldana, R., and Huber, J.T. (1989) Influence of Varying Protein and Starch Degradabilities on Performance of Lactating Cows, J. Dairy Sci. 72, 1477–1483.

    PubMed  CAS  Google Scholar 

  28. Casper, D.P., Schingoethe, D.J., and Eisenbeisz, W.A. (1990) Response of Early Lactation Dairy Cows Fed Diets Varying in Source of Nonstructural Carbohydrate and Crude Protein, J. Dairy Sci. 73, 1039–1050.

    PubMed  CAS  Google Scholar 

  29. Aldrich, J.M., Muller, L.D., Varga, D.A., and Griel, L.C. (1993) Nonstructural Carbohydrates and Protein Effects on Rumen Fermentation, Nutrient Flow, and Performance of Dairy Cows, J. Dairy Sci. 76, 1091–1105.

    PubMed  CAS  Google Scholar 

  30. Sauvant, D., Chapoutot, P., and Archimède, H. (1994) La digestion des amidons par les ruminants et ses conséquences, INRA prod. Anim. 7, 115–124.

    Google Scholar 

  31. McClymont, G.L., and Vallance, S. (1962) Depression of Blood Glycerides and Milk-Fat Synthesis by Glucose Infusion, Proc. Nutr. Soc. 21, 41–42.

    Google Scholar 

  32. Bauman, D.E., and Griinari, J.M. (2001) Regulation and Nutritional Manipulation of Milk Fat: Low-Fat Milk Syndrome, Livest. Prod. Sci. 70, 15–29.

    Article  Google Scholar 

  33. Gaynor, P.J., Waldo, D.R., Capuco, A.V., Erdman, R.A., Douglass, L.W., and Teter, B.B. (1995) Milk Fat Depression, the Glucogenic Theory, and trans-C18∶1 Fatty Acid, J. Dairy Sci. 78, 2008–2015.

    PubMed  CAS  Google Scholar 

  34. Davis, C.L., and Brown, R.E. (1970) Low-Fat Milk Syndrome, in Physiology of Digestion and Metabolism in the Ruminant (Phillipson, A.T., ed.), pp. 545–565, Oriel Press, Newcastle upon Tyne, United Kingdom.

    Google Scholar 

  35. Selner, D.R., and Schultz, L.H. (1980) Effects of Feeding Oleic Acid or Hydrogenated Vegetable Oils to Lactating Cows, J. Dairy Sci. 63, 1235–1241.

    PubMed  CAS  Google Scholar 

  36. Jahreis, G., Fritsche, J., and Steinhart, H. (1996) Monthly Variations of Milk Composition with Special Regards to Fatty Acids Depending on Season and Farm Management Systems—Conventional Versus Ecological, Fett/Lipid 98, 356–359.

    Article  CAS  Google Scholar 

  37. Fritsche, J., and Steinhart, H. (1997) Contents of trans Fatty Acids in German Foods and Estimation of Daily Intake, Fett/Lipid 99, 314–318.

    Article  CAS  Google Scholar 

  38. Joy, M.T., DePeters, E.J., Fadel, J.G., and Zinn, R.A. (1997) Effects of Corn Processing on the Site and Extent of Digestion in Lactating Dairy Cows, J. Dairy Sci. 80, 2087–2097.

    PubMed  CAS  Google Scholar 

  39. Griinari, J.M., Dwyer, D.A., McGuire, D.A., Bauman, D.E., Palmquist, D.L., and Nurmela, K.V.V. (1998) Trans-Octadecenoic Acids and Milk Fat Depression in Lactating Dairy Cows, J. Dairy Sci. 81, 1251–1261.

    PubMed  CAS  Google Scholar 

  40. Griinari, J.M., Nurmela, K.V.V., and Bauman, D.E. (1997) Trans-10 Isomer of Octadecenoic Acid Corresponds with Milk Fat Depression, J. Dairy Sci. 80 (Suppl. 1), 204 (abstract).

    Google Scholar 

  41. Griinari, J.M., and Bauman, D.E. (1999) Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Meat and Milk in Ruminants, in Advances in Conjugated Linoleic Acid Research (Yurawecz, M.P., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., and Nelson, G.J., eds.), Vol. 1, pp. 180–200, AOCS Press, Champaign.

    Google Scholar 

  42. Piperova, L.S., Teter, B.B., Bruckental, I., Sampugna, J., Mills, S.E., Yurawecz, M.P., Fritsche, J., Ku, K., and Erdman, R.A. (2000) Mammary Lipogenic Enzyme Activity, trans Fatty Acids and Conjugated Linoleic Acids are Altered in Lactating Dairy Cows Fed a Milk Fat-Depressing Diet, J. Nutr. 130, 2568–2574.

    PubMed  CAS  Google Scholar 

  43. Precht, D., hagemeister, H., Kanitz, W., and Voigt, J. (2002) Milk Fat Depression and the Role of trans and CLA Fatty Acid Isomers by Feeding a High Fiber Diet with Calcium Soaps of Fatty Acids in Early Lactating Dairy Cows, Milchwissenschaft 57, 518–522.

    CAS  Google Scholar 

  44. Corl, B.A., Baumgard, L.H., Dwyer, D.A., Griinari, J.M., Phillips, D.S., and Bauman, D.E. (2001) The Role of Δ9-Desaturase in the Production of cis-9,trans-11 CLA, J. Nutr. Biochem. 12, 622–630.

    Article  PubMed  CAS  Google Scholar 

  45. Baumgard, L.H., Matitashvili, E., Corl, B.A., Dwyer, D.A., and Bauman, D.E. (2002) Trans-10,cis-12 Conjugated Linoleic Acid Decreases Lipogenic Rates and Expression of Genes Involved in Milk Lipid Synthesis in Dairy Cows, J. Dairy Sci. 85, 2155–2163.

    PubMed  CAS  Google Scholar 

  46. Bauman, D.E., and Griinari, J.M. (2003) Nutritional Regulation of Milk Fat Synthesis, Annu. Rev. Nutr. 23, 203–207.

    Article  PubMed  CAS  Google Scholar 

  47. Ledoux, M., Laloux, L., and Sauvant, D. (2002) Occurrence of trans-C18∶1 Fatty Acid Isomers in Goat Milk: Effect of Two Dietary Regimens, J. Dairy Sci. 85, 190–197.

    Article  PubMed  CAS  Google Scholar 

  48. Precht, D., and Molketin, J. (1995) Trans Fatty Acids: Implications for Health, Analytical Methods, Incidence in Edible Fats and Intake, Nahrung 39, 343–375.

    Article  PubMed  CAS  Google Scholar 

  49. Jiang, J., Bjoerck, L., Fonden, R., and Emanuelson, M. (1996) Occurrence of Conjugated cis-9,trans-11-Octadecadienoic Acid in Bovine Milk: Effect of Feed and Dietary Regimen, J. Dairy Sci. 78, 438–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jurjanz.

About this article

Cite this article

Jurjanz, S., Monteils, V., Juaneda, P. et al. Variations of trans octadecenoic acid in milk fat induced by feeding different starch-based diets to cows. Lipids 39, 19–24 (2004). https://doi.org/10.1007/s11745-004-1196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1196-4

Keywords

Navigation