Skip to main content
Log in

Development of intestinal alkaline sphingomyelinase in rat fetus and newborn rat

  • Articles
  • Published:
Lipids

Abstract

Sphingomyelin metabolism is a novel signal transduction pathway related to cell differentiation, proliferation, and apoptosis. Alkaline sphingomyelinase (alk-SMase) is specifically present in the intestinal tract of many species. The enzyme is important in digestion of dietary sphingomyelin. Milk is the ony exogenous source of sphingomyelin for an infant, and digestion of milk sphingomyelin may be important for development of intestinal mucosa. It is unknown whether alk-SMase is present before birth and whether it changes after birth and during the suckling period. We studied activities, expression, and distribution of alk-SMase in rat fetus and newborn. The changes of acid and neutral SMase as well as alkaline phosphatase were analyzed for comparison. Little activity of alk-SMase was identified up to gestation day 20, but increased 10 times during the following 2 d. After birth, the activity continused to increase during the following 4 wk. Western blot using IgY antibody against rat alk-SMase failed to identify the enzyme at gestation day 20 but clearly showed the protein at day 22. The distribution pattern of the enzyme along the intestinal tract in fetus was largely the same as in adult animals, but became more pronounced after birth. Short-term weaning had no effect on alk-SMase activity. The activities of acid and neutral SMase were high at gestation day 20 and decreased significantly before birth. The changes of alk-SMase also differed from those of alkaline phosphatase, another brush border enzyme. Thus, we conclude that alk-SMase is rapidly expressed during the last days of gestation and that the newborn rat acquires the ability to digest milk sphingomyelin early in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

alk-SMase:

alkaline sphingomyelinase

GC:

glycocholate

GCDC:

glycochenodeoxycholate

PMSF:

phenylmethylsulfonyl fluoride

SM:

sphingomyelin

SMase:

sphingomyelinase

TC:

taurocholate

TDC:

taurodeoxycholate

References

  1. Kolesnick, R.N., and Kronke, M. (1998) Regulation of Ceramide Production and Apoptosis, Annu. Rev. Physiol. 60, 643–665.

    Article  PubMed  CAS  Google Scholar 

  2. Hannun, Y.A., and Linardic, C.M. (1993) Sphingolipid Breakdown Products: Anti-proliferative and Tumor-Suppressor Lipids, Biochim. Biophys. Acta 1154, 223–236.

    PubMed  CAS  Google Scholar 

  3. Kanfer, J.N., Young, O.M., Shapiro, D., and Brady, R.O. (1966) The Metabolism of Sphingomyelin. I. Purification and Properties of a Sphingomyelin-Cleaving Enzyme from Rat Liver Tissue, J. Biol. Chem. 241, 1081–1084.

    PubMed  CAS  Google Scholar 

  4. Quintern, L.E., Weitz, G., Nehrkorn, H., Tager, J.M., Schram, A.W., and Sandhoff, K. (1987) Acid Sphingomyelinase from Human Urine: Purification and Characterization, Biochim. Biophys. Acta 922, 323–336.

    PubMed  CAS  Google Scholar 

  5. Sakuragawa, N. (1982) Acid Sphingomyelinase of Human Placenta: Purification, Properties and 125Iodine Labeling, J. Biochem. 92, 637–646.

    PubMed  CAS  Google Scholar 

  6. Yamanaka, T., and Sazuki, K. (1982) Acid Sphingomyelinase of Human Brain: Purification to Homogeneity, J. Neutrochem. 38, 1753–1764.

    Article  CAS  Google Scholar 

  7. Gatt, S. (1976) Magnesium-Dependent Sphingomyelinase, Biochem. Biophys. Res. Commun. 68, 235–241.

    Article  PubMed  CAS  Google Scholar 

  8. Chatterjee, S., and Ghosh, N. (1989) Neutral Sphingomyelinase from Human Urine. Purification and Preparation of Monospecific Antibodies, J. Biol. Chem. 264, 12554–12561.

    PubMed  CAS  Google Scholar 

  9. Quintern, L.E., Schuchman, E.H., Levran, O., Suck, M., Ferlinz, K., Reinke, H., Sandhoff, K., and Desnick, R.J. (1989) Isolation of cDNA Clones Encoding Human Acid Sphingomyelinase: Occurrence of Alternatively Processed Transcripts, EMBO J. 8, 2469–2473.

    PubMed  CAS  Google Scholar 

  10. Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M., and Stoffel, W. (1998) Cloned Mammalian Neutral Sphingomyelinase: Functions in Sphingolipid Signaling? Proc. Natl. Acad. Sci. USA 95, 3638–3643.

    Article  PubMed  CAS  Google Scholar 

  11. Chatterjee, S., Han, H., Rollins, S., and Cleveland, T. (1999) Molecular Cloning, Characterization, and Expression of a Novel Human Neutral Sphingomyelinase, J. Biol. Chem. 274, 37407–37417.

    Article  PubMed  CAS  Google Scholar 

  12. Schuchman, E.H., Levran, O., Pereira, L.V., and Desnick, R.J. (1992) Structural Organization and Complete Nucleotide Sequence of the Gene Encoding Human Acid Sphingomyelinase (SMPD1), Genomics 12, 197–205.

    Article  PubMed  CAS  Google Scholar 

  13. Nilsson, Å. (1969) The Presence of Sphingomyelin- and Ceramide-Cleaving Enzymes in the Small Intestinal Tract, Biochim. Biophys. Acta 176, 339–347.

    PubMed  CAS  Google Scholar 

  14. Duan, R.-D., Nyberg, L., and Nilsson, Å. (1995) Alkaline Sphingomyelinase Activity in Rat Gastrointestinal Tract: Distribution and Characterization, Biochim. Biophys. Acta 1259, 49–55.

    PubMed  Google Scholar 

  15. Cheng, Y., Nilsson, Å., Tömquist, E., and Duan, R.D. (2002) Purification, Characterization and Expression of Rat Intestinal Alkaline Sphingomyelinase, J. Lipid Res. 43, 316–324.

    PubMed  CAS  Google Scholar 

  16. Zeisel, S.H., Char, D., and Sheard, N.F. (1986) Choline Phosphatidylcholine and Sphingomyelin in Human and Bovine Milk and Infant Formulas, J. Nutr. 116, 50–58.

    PubMed  CAS  Google Scholar 

  17. Blank, M., Cress, E.A., Smith, Z.L., and Snyder, F. (1992) Meats and Fish Consumed in the American Diet Contain Substantial Amounts of Ether-Linked Phospholipids, J. Nutr. 122, 1656–1661.

    PubMed  CAS  Google Scholar 

  18. Nyberg, L., Nilsson, Å., Lundgren, P., and Duan, R.-D. (1997) Localization and Capacity of Sphingomyelin Digestion in the Rat Intestinal Tract, J. Nutr. Biochem. 8, 112–118.

    Article  CAS  Google Scholar 

  19. Nyberg, L., Duan, R.-D., Axelsson, J., and Nilsson, Å. (1996) Identification of an Alkaline Sphingomyelinase Activity in Human Bile, Biochim. Biophys. Acta 1300, 42–48.

    PubMed  Google Scholar 

  20. Stoffel, W. (1975) Chemical Synthesis of Choline-Labeled Lecithins and Sphingomyelins, Methods Enzymol. 35, 533–541.

    PubMed  CAS  Google Scholar 

  21. Duan, R.D., and Nilsson, Å. (1999) Sphingolipid Hydrolyzing Enzymes in the Gastrointestinal Tract, Methods Enzymol. 311, 276–286.

    Article  Google Scholar 

  22. Chatterjee, S. (1993) Neutral Sphingomyelinase, Adv. Lipid Res. 26, 25–48.

    PubMed  CAS  Google Scholar 

  23. Murata, T., Saito, S., Shiozaki, M., Lu, R.Z., Eto, Y., Funaba, M., Takahashi, M., and Torii, K. (1996) Anti-activin A Antibody (IgY) Specifically Neutralizes Various Activin A Activities, Proc. Soc. Exp. Biol. Med. 211, 100–107.

    PubMed  CAS  Google Scholar 

  24. Cheng, Y., Tauschel, H.-T., Nilsson, Å., and Duan, R.-D. (1999) Administration of Ursodeoxycholic Acid Increases the Activities of Alkaline Sphingomyelinase and Caspase-3 in Rat Colon, Scand. J. Gastroenterol. 34, 915–920.

    Article  PubMed  CAS  Google Scholar 

  25. Hamosh, M. (2001) Bioactive Factors in Human Milk, Breast-feeding 48, 69–86.

    CAS  Google Scholar 

  26. Cummins, A.G., and Thompson, F.M. (2002) Effect of Breast Milk and Weaning on Epithelial Growth of the Small Intestine in Humans, Gut 51, 748–754.

    Article  PubMed  CAS  Google Scholar 

  27. Omodeo-Sale, F., Lindi, C., Marciani, P., Cavatorta, P., Sartor, G., Masotti, L., and Esposito, G. (1991) Postnatal Maturation of Rat Intestinal Membrane: Lipid Composition and Fluidity, Comp. Biochem. Physiol. A 100, 301–307.

    Article  PubMed  CAS  Google Scholar 

  28. Rings, E.H., de Boer, P.A., Moorman, A.F., van Beer, E.H., Dekker, J., Montgomery, R.K., Grand, R.J., and Buller, H.A. (1992) Lactase Gene Expression During Early Development of Rat Small Intestine, Gastroenterology 103, 1154–1161.

    PubMed  CAS  Google Scholar 

  29. Kobayashi, T., and Suzuki, K. (1981) The Glycosylceramidase in the Murine Insestine. Purification and Substrate Specificity, J. Biol. Chem. 256, 7768–7773.

    PubMed  CAS  Google Scholar 

  30. Kobayashi, T., and Suzuki, K. (1981) A Taurodeoxycholate-Activated Galactosylceramidase in the Murine Intestine, J. Biol. Chem. 256, 1133–1137.

    PubMed  CAS  Google Scholar 

  31. Mathan, M., Moxey, P.C., and Trier, J.S. (1976) Morphogenesis of Fetal Rat Duodenal Villi, Am. J. Anat. 146, 73–92.

    Article  PubMed  CAS  Google Scholar 

  32. Trier, J.S., and Moxey, P.C. (1979) Morphogenesis of the Small Intestine During Fetal Development, CIBA Found. Symp. 70, 3–29.

    PubMed  Google Scholar 

  33. Duan, R.-D., Hertervig, E., Nyberg, L., Tauge, T., Sternby, B., Lilienau, J., Farooqi, A., and Nilsson, Å. (1996) Distribution of Alkaline Sphingomyelinase Activity in Human Beings and Animals, Dig. Dis. Sci. 41, 1801–1806.

    Article  PubMed  CAS  Google Scholar 

  34. Estrada, G., Krasinski, S.D., Montgomery, R.K., Grand, R.J., Garcia-Valero, J., and Lopez-Tejero, M.D. (1996) Quantitative Analysis of Lactase-Phlorizin Hydrolase Expression in the Absorptive Enterocytes of Newborn Rat Small Intestine, J. Cell. Physiol. 167, 341–348.

    Article  PubMed  CAS  Google Scholar 

  35. Seetharam, B., Yeh, K.Y., Moog, F., and Alpers, D.H. (1977) Development of Intestinal Brush Border Membrane Proteins in the Rat, Biochim. Biophys. Acta 470, 424–436.

    Article  PubMed  CAS  Google Scholar 

  36. Yedlin, S.T., Young, G.P., Seetharam, B., Seetharam, S., and Alpers, D.H. (1981) Characterization and Comparison of Soluble and Membranous Forms of Intestinal Alkaline Phosphatase from the Suckling Rat, J. Biol. Chem. 256, 5620–5626.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Dong Duan.

About this article

Cite this article

Lillienau, J., Cheng, Y., Nilsson, Å. et al. Development of intestinal alkaline sphingomyelinase in rat fetus and newborn rat. Lipids 38, 545–549 (2003). https://doi.org/10.1007/s11745-003-1340-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1340-1

Keywords

Navigation